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Representations of solutions of evolutionary

differential equations.
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Some definitions of Feynman pseudomeasures.

1. As a limit of integrals over Cartesian products of a
space(Feynman, 1948 (configuration space), 1951 (phase
space); Nelson, 1964 (configuration space) ).

2. White noise analysis (Hida-Streit, 1975-80).
3. Analytical continuation (Gelfand-Yaglom, 1956,

configuration space); Smolyanov-Shavgulidze, 1990, phase
space).
4. Fourier transform (Cecile deWitt-Morette , 1974).

5. Parceval identity (Maslov-Chebotarev, 1976, Albeverio-
Hoeg-Krohn, 1976).

6. Central limit theorem (Smolyanov-Khrennikov, 1985).



A Feynman formula A Feynman formula is a
representation of either the Schrodinger group etH  op
the Schrodinger semigroup et by limits of integrals
over Cartesian powers of some space E (here H is a
classical Hamilton function and H is a corresponding
quantum mechanical Hamiltonian); if E is the phase
(resp. configuration) space of the corresponding classical
Hamiltonian system then one can speak of the Feynman
formula in the phase (resp. configuration) space. The
multiple integrals in Feynman formulae approximate
integrals with respect to some measure or pseudomeasure
on a set of functions which take values in £/ and are defined

on a real interval (such functions are also called paths in F)



A Feynman-Kac formula Hence Feynman formulae
imply some representations of Schrodinger groups
and semigroups by integrals over paths in FE; such
representations are called Feynman-Kac formulae. A
pseudomeasure is, by definition, a linear functional ¢ on
a suitable space of functions defined on the space of paths
in E:; the integral of a function f with respect to this
pseudomeasure is defined as ®(f). So deriving the Feynman
formulas is the key step in evaluating path integrals which
represent solutions to the Cauchy problem for the heat
and Schrodinger equations. An important role is played
by the Chernoff theorem which is a generalization of the

well-known Trotter theorem.



Theorem (Chernoff) Let X be a Banach space. Let F' :
0,00) — L(X) be a strongly continuous mapping such that
F(0) =1, ||F(t)]| < exp(at) for some a € R, D be a linear
subspace in D(F’(0)) and the restriction of F'(0) to D be
a closable operator whose closure we denote by C'. If C' is
the generator of a strongly continuous semigroup exp(tC'),
then F'(t/n)" converges to exp(tC') as n — oo in the strong

operator topology uniformly with respect to ¢t € [0,T] for
each T > 0.

Let F(t) = e“e'B; then
F'(0) = A+ B, F(0) = I, e*B) = lim(en"enB)".



Applications 1. Equations on Riemannian manifolds.
2. Random fields in Riemannian manifolds.

3. Feynman formulae in phase spaces.

4. Equations in bounded domains.

5. Quasiparticles with position-dependent mass.

6. Selfadjoint equations of operators and the Feynman

formulae.
7. Diffusion and quantum dynamics on graphs.

8.Equations on infinite dimensional manifolds of paths in

Riemannian manifolds.



Quantum dynamics and diffusion on [0,00). Let H is a
perturbation of a selfadjoint extension of A (= j_;) in
L5(0, 00). The collection H of such extensions is labelled by
elements of (—o0, 00]. If @ € (—00, 00|, then the selfadjoint
extension H, € H is defined as follows. Let W = W (0, 00)
be the set of those differentiable functions on [0, 00) whose
derivatives are abs. continuous and in turn have derivatives
belonging to Ls(0,00). Then domH, = {f € W : f(0) =
af’'(0)}ifa # co and domHs = {f € W : f/(0) = 0}if f €
domH,, ro H,f(z) = f"(z). If V is a bounded continuous
function on(0, c0), then the operator f — H,f+V () f with
the same domain is also selfadjoint; we denote this operator

by H,+V.



Let X = L5(0,00), a € (—o0,00| and, for t > 0,
the mappings Fi(t) : X — Lo(—00,00), F(t)
Ly(—00,00) — X, F(t) : X — X, F*(t) : X — X
are defined by:
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where ¢, = n — 4y, 7+ : R — [0,1] is a smooth
function such that m(x) = 0 for x < =3¢, m(z) = 1 for
r > =2t and () = m(z)m(—z) for z 5 Fr(t)(f)(z) =
L[ exp(—E50) f(2)dz By(t)(f)(x) = €@ f(),
Fo(t) = F3(t) Fa(t )Fl(\/_)'

Theorem 1. For any v € X, t > 0 the following Feynman




formula holds: et(ﬁﬁv)gp = limy, o (F* (%))n o B X.

Let Fy(t), t € (0,00) be a continuous map of Ly(—00, c0)

into X whose restriction to D(—o0, 00) is defined by

FHO()a) = = / exp(i 20 f(2)de

Fy(t)(f)(z) = eV f(x), Flo(t) = F5 () Fy (t) F(VT).

Theorem 2. For any ¢ € L?*(0,00), t > 0, the following

Feynman formula holds: eit(ﬁﬁv)gp = lim,, oo (F la (%))n ©
B L?(0,00).



Feynman formulae for quantum dynamics and
diffusion of particle with position-dependent mass.
We consider perturbations of selfadjoint extensions of A,
in Ly(—00,00). Here g is defined by: g(x) = ¢; > 0 for
r < 0and g(z) =cy >0 for x > 0.

We consider selfadjoint extensions described by Gadella and
his collaborators. Any such extensions is defined by an
invertible operator T' = (¢;;) in C* as follows: the domain
is the collection of functions h € W(—o00,00) such that if
ht = (hT(0), T (0))(e C?), h~ = (h(0),h(0)), then
ht = Th~. This extension is denoted by Hr.



Let X = Ly(—00,00), T be the operator defined a
selfadjoint extension and let for each t > 0, the mapings
Fi(t): X = X X, F5(1t) : XX - X, Fg(t): X —
X, F'(t) : X — X are defined as follows. Fy(t)(f) =
(h,k) € X @& X, where h(z) = (arx + z0)¥(x) + f(x)ey,
k(z) = (a_x+ z_)Y(x) + ¢ (—x) f(x) and the functions ¢y

n 1, are the same as above and a,a_, z,, z_ are derined by

att + 24 = 2tfo 2)dz, —at+ 2z = 2tf2tf
L4 = tnz_ -+ tlga_, CL_|_ = tzlz -+ t22a_ MOYGOVGI,

Fs(t)((h, k))(z) = m [ exp(= L) h(2)dz for z > 0,
Fs(t)((h k) (x) = =[5, exp(— 5L k(2)dz for 2 < 0;
Fo(t)(f) (@) = ") f(a); FT(t) = Fo(t) F5(t) Fa(v/1).




Theorem 3. For any ¢ € X t > 0 the following Feynman
formula holds: e!#7™V) o = lim,,, o (FT (%))n v B X.

Let F2(t), t € (0,00) be a continuous mapping of — X into
X, whose restriction to D( 00 oo) is defined by:

FL ) (h, k)) em ° exp(iSVn(2)dz if x>0,
F(t)((h, k) em ° expli —>)k( )z if z < 0
and let

F§()(f)(w) = eV f(a), FYT(t) = F§(t) 3 (t) Fa(t).
Theorem 4. For any ¢ € X, t > 0 the following Feynman
formula holds: e Hm V) = lim,,, o, (F'7 (%))n ©BX.



Cauchy-Dirichlet problem. Let G be a domain in a
Riemannian manifold K, having the smooth boundary T,
let v be the Borel measure in G, generated by the volume
formand let D be the differential operator, in the space of
functions on G, defined by D f = %A f + V f. One consider
Cauchy—Dirichlet problems for the Schrodinger equation
if'(t) = D(f(t)) and for the heat equation f'(t) = D(f(t));
here f : [0,a) — E = L9(G,v),a > 0. Let Dp be the
selfadjoint operator in G corresponding to. We want to find
e'Prl and ePrf), t € [0,a) for any f € Cy where Cj
is the collection of continuous functions on G vanishing
on I'. If (= () is a function on G then the mapping
©+— 1G> x— Y(-)p(-)] is also denoted by 1.



Feynman formulae for Cauchy-Dirichlet problem.

2 2

Let gR(ta q1, QQ) — e_p (%1{(12)7 g(ta d1, qQ) — 6_”(]2 231“ )
il —as 112

O(t,q1,q) = e~ 25, || - || be the norm in R", g; € K.

For F': (0,00) Xx K x K — Cand t € (0,00) let Ap(t) be
the operator in the space of complex functions on K, defined

by: (Ap(t) = [ F(t,q,q1)f(q1)v(dg). The similar
notation is used for operators in the space of functions on G

Theorem. If K =R" and f € (| then for any t > 0
(€2 f)(a) = Tim (((v/278/n) Ag, (t/m)ex” )" £)(q);
(6“DDf)( q) = lim (((er(t/n)(-) Aa(t/n)exV )" £)(q),

fRn (t,q1,q2)dqo (r.h.s. does not depend on ¢ ).



Theorem. If f € (), t > 0 then:
(@2 1)(q) = Tim eaft, n, q)(Aga(t/m)er” ey ) (g),

where (c1(t,n,q))" = (A, (t/n))"1)(¢) and 1 is the

function on K whose values at each point are equal to 1.

(€7 £)(q) = lim es(t,n,q)(Ag(t/n)er’O)einnemaxO) py(g),

where (c3(£,n,9)) ™" = (Ag(t/n))"1)(q).

The similar statements are valid for e*Pr.



Diffusion on graphs. Let A = {(a,0,0) : a € [0,00},
B = {(0,a,0) : a € [0,00)}, C = {(0,0,a) : a €
0,00)}, G = AUBUC, H is a perturbation of a
symmetrical closed extension of A (= dd—;) in Ly(G). If V is
a bounded continuous function on(0, c0), then the operator
f— Hf +V(-)f is also symmetrical and closed; we denote

this operator by H+V.

B(t)(f)(@) = <= [ exp(—24EL) f(2)dz where o =
(21, T2,23),2 = (21,29, 23),dist(x,z) is the distance
between  and z ; F3(t)(f)(z) = "@Wf(z), F(t) =
Fy(t)Fy(t)Fi(V/t), Fy is similar to the function above for

which a similar notation is used.




Theorem 1a. For any ¢ € X, t > 0 the following Feynman
formula holds: e/ V) = lim,,, (F (%))n v B X.

F(f)(2) = = [7 exp(i45=E) f(2)dz where 2 =
(21,29, 23),2 = (21, 29,23),dist(x,z) is the distance
between  and z ; Fi(t)(f)(z) = e V@ f(x), Fi(t) =
Fi(HFi(HF (Vi)

Theorem 2a. For any ¢ € X, t > 0 the following Feynman
formula holds: e®H+V) = lim,,, ., (F (L))" ¢ B X.

Problem. To define the measure and pseudomeasure in
the Feynman-Kac formulae corresponding to the Feynman

formulae in Theorems la and 2a.



Some historical remarks.

Configuration space
Feynman, 1942-48
Trotter-Daleckii, 1960-61
E.Nelson, 1964

Phase space
Feynman, 1951
Chernoft, 1968
S.—Tokarev—Truman, 2002
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