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Representations of solutions of evolutionary

differential equations.

∂f

∂t
=

1

2
4f + V (·)f ; f : [0,∞) × E → C; f(0, ·) = g

f(t, q) =

∫

C0([0,t],E)

e
∫ t

0
V (ξ(τ)+q)dτg(ξ(τ) + q)νW (dξ)



νW{ξ ∈ C0([0, t], E); ξ(tj) ∈ (aj, bj), j = 1, 2, ..., n} =

=
∫ b1

a1

∫ b2

a2
...

∫ bn

an

p(t1,0,q1)
∫

E
p(t1,0,q1)dq1

p(t2−t1,q1,q2)
∫

E
p(t2−t1,q1,q2)dq2

p(t3−t2,q2,q3)
∫

E
p(t3−t2,q2,q3)dq3

, ...,

p(t4−t3,q3,q4)
∫

E
p(t4−t3,q3,q4)dq4

dq1...dqn =

= (
∫

E×E×...×E
p(t1, 0, q1)p(t2 − t1, q1, q2)p(t3 − t2, q2, q3), ...,

p(t4 − t3, q3, q4)dq1...dqn)
−1

∫ b1

a1

∫ b2

a2
...

∫ bn

an
p(t1, 0, q1)p(t2 −

t1, q1, q2)p(t3 − t2, q2, q3), ..., p(t4 − t3, q3, q4)dq1...dqn;

p(t, q1, q2) = e−
‖q2−q1‖

2

2t



i~
∂f

∂t
= − ~

2

2m

1

2
4f+V (·)f ; f : [0,∞)×E → C; f(0, ·) = g

~ = 1, m = 1

f(t, q) =

∫

C0([0,t],E)

e−i
∫ t

0
V (ξ(τ)+q)dτg(ξ(τ) + q)ΦW (dξ)

Here p(t, q1, q2) = ei
‖q2−q1‖

2

2t

See: O.G.Smolyanov. Feynman formulae for evolutionary

equations// Trends in Stochastic Analysis, Volume

dedicated to Prof. H.von Weizsäcker on occasion of his
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Some definitions of Feynman pseudomeasures.

1. As a limit of integrals over Cartesian products of a

space(Feynman, 1948 (configuration space), 1951 (phase

space); Nelson, 1964 (configuration space) ).

2. White noise analysis (Hida-Streit, 1975-80).

3. Analytical continuation (Gelfand-Yaglom, 1956,

configuration space); Smolyanov-Shavgulidze, 1990, phase

space).

4. Fourier transform (Cecile deWitt-Morette , 1974).

5. Parceval identity (Maslov-Chebotarev, 1976, Albeverio-

Hoeg-Krohn, 1976).

6. Central limit theorem (Smolyanov-Khrennikov, 1985).



A Feynman formula A Feynman formula is a

representation of either the Schrödinger group eitĤ or

the Schrödinger semigroup etĤ by limits of integrals

over Cartesian powers of some space E (here H is a

classical Hamilton function and Ĥ is a corresponding

quantum mechanical Hamiltonian); if E is the phase

(resp. configuration) space of the corresponding classical

Hamiltonian system then one can speak of the Feynman

formula in the phase (resp. configuration) space. The

multiple integrals in Feynman formulae approximate

integrals with respect to some measure or pseudomeasure

on a set of functions which take values in E and are defined

on a real interval (such functions are also called paths in E)



A Feynman-Kac formula Hence Feynman formulae

imply some representations of Schrödinger groups

and semigroups by integrals over paths in E; such

representations are called Feynman-Kac formulae. A

pseudomeasure is, by definition, a linear functional Φ on

a suitable space of functions defined on the space of paths

in E; the integral of a function f with respect to this

pseudomeasure is defined as Φ(f). So deriving the Feynman

formulas is the key step in evaluating path integrals which

represent solutions to the Cauchy problem for the heat

and Schrödinger equations. An important role is played

by the Chernoff theorem which is a generalization of the

well-known Trotter theorem.



Theorem (Chernoff) Let X be a Banach space. Let F :

[0,∞) → L(X) be a strongly continuous mapping such that

F (0) = I, ‖F (t)‖ ≤ exp(at) for some a ∈ R, D be a linear

subspace in D(F ′(0)) and the restriction of F ′(0) to D be

a closable operator whose closure we denote by C. If C is

the generator of a strongly continuous semigroup exp(tC),

then F (t/n)n converges to exp(tC) as n→ ∞ in the strong

operator topology uniformly with respect to t ∈ [0, T ] for

each T > 0.

Example: Trotter formula. Let F (t) = etAetB; then

F ′(0) = A+B, F (0) = I, et(A+B) = lim(e
t
n
Ae

t
n
B)n.



Applications 1. Equations on Riemannian manifolds.

2. Random fields in Riemannian manifolds.

3. Feynman formulae in phase spaces.

4. Equations in bounded domains.

5. Quasiparticles with position-dependent mass.

6. Selfadjoint equations of operators and the Feynman

formulae.

7. Diffusion and quantum dynamics on graphs.

8.Equations on infinite dimensional manifolds of paths in

Riemannian manifolds.



Quantum dynamics and diffusion on [0,∞). Let Ĥ is a

perturbation of a selfadjoint extension of ∆ (= d2

dx2 ) in

L2(0,∞). The collection H of such extensions is labelled by

elements of (−∞,∞]. If a ∈ (−∞,∞], then the selfadjoint

extension Ĥa ∈ H is defined as follows. Let W = W (0,∞)

be the set of those differentiable functions on [0,∞) whose

derivatives are abs. continuous and in turn have derivatives

belonging to L2(0,∞). Then domĤa = {f ∈ W : f(0) =

af ′(0)} if a 6= ∞ and domĤ∞ = {f ∈ W : f ′(0) = 0} if f ∈
domĤa, то Ĥaf(x) = f ′′(x). If V is a bounded continuous

function on(0,∞), then the operator f 7→ Ĥaf+V (·)f with

the same domain is also selfadjoint; we denote this operator

by Ĥa + V .



Let X = L2(0,∞), a ∈ (−∞,∞] and, for t > 0,

the mappings F1(t) : X → L2(−∞,∞), F2(t) :

L2(−∞,∞) → X, F3(t) : X → X, F a(t) : X → X

are defined by:

F1(t)(f)(x) =
1
2t

∫ 2t

0 f(z)dz(1 + ax)

1 + at
ψt(x) + f(x)ϕt(x),

where ϕt = ηt − ψt, ηt : R
1 → [0, 1] is a smooth

function such that ηt(x) = 0 for x < −3t, ηt(x) = 1 for

x > −2t and ψt(x) = ηt(x)ηt(−x) for x ; F2(t)(f)(x) =
1√
2πt

∫ ∞
−∞ exp(− (x−z)2

2t
)f(z)dz; F3(t)(f)(x) = eV (x)f(x),

F a(t) = F3(t)F2(t)F1(
√
t).

Theorem 1. For any ϕ ∈ X, t > 0 the following Feynman



formula holds: et(Ĥa+V )ϕ = limn 7→∞
(

F a
(

t
n

))n
ϕ в X.

Let F 1
2 (t), t ∈ (0,∞) be a continuous map of L2(−∞,∞)

into X whose restriction to D(−∞,∞) is defined by

F 1
2 (t)(f)(x) =

e−iπ
4

√
2πt

∫ ∞

−∞
exp(i

(x− z)2

2t
)f(z)dz,

F 1
3 (t)(f)(x) = eiV (x)f(x), F 1a(t) = F 1

3 (t)F 1
2 (t)F1(

√
t).

Theorem 2. For any ϕ ∈ L2(0,∞), t > 0, the following

Feynman formula holds: eit(Ĥa+V )ϕ = limn 7→∞
(

F 1a
(

t
n

))n
ϕ

в L2(0,∞).



Feynman formulae for quantum dynamics and

diffusion of particle with position-dependent mass.

We consider perturbations of selfadjoint extensions of ∆g,0

in L2(−∞,∞). Here g is defined by: g(x) = c1 > 0 for

x < 0 and g(x) = c2 > 0 for x > 0.

We consider selfadjoint extensions described by Gadella and

his collaborators. Any such extensions is defined by an

invertible operator T = (tij) in C
2 as follows: the domain

is the collection of functions h ∈ W (−∞,∞) such that if

h+ = (h+(0), h′+(0))(∈ C
2), h− = (h−(0), h′−(0)), then

h+ = Th−. This extension is denoted by ĤT .



Let X = L2(−∞,∞), T be the operator defined a

selfadjoint extension and let for each t > 0, the mapings

F4(t) : X → X ⊕ X,F5(t) : X ⊕ X → X, F6(t) : X →
X, F T (t) : X → X are defined as follows. F4(t)(f) =

(h, k) ∈ X ⊕X, where h(x) = (a+x + z+)ψt(x) + f(x)ϕt,

k(x) = (a−x+ z−)ψt(x) +ϕt(−x)f(x) and the functions ϕt

и ψt are the same as above and a+, a−, z+, z− are derined by

a+t+ z+ = 1
2t

∫ 2t

0 f(z)dz, −a−t+ z− = 1
2t

∫ 0

−2t
f(z)dz

z+ = t11z− + t12a−, a+ = t21z− + t22a−. Moreover,

F5(t)((h, k))(x) = 1√
2πt

∫ ∞
−∞ exp(− (x−z)2

2t
)h(z)dz for x > 0,

F5(t)((h, k))(x) = 1√
2πt

∫ ∞
−∞ exp(− (x−z)2

2t
)k(z)dz for x < 0;

F6(t)(f)(x) = eV (x)f(x);F T (t) = F6(t)F5(t)F4(
√
t).



Theorem 3. For any ϕ ∈ X t > 0 the following Feynman

formula holds: et(ĤT +V )ϕ = limn 7→∞
(

F T
(

t
n

))n
ϕ в X.

Let F 1
5 (t), t ∈ (0,∞) be a continuous mapping of — X into

X, whose restriction to D(−∞,∞) is defined by:

F 1
5 (t)((h, k))(x) = e−i π

4√
2πt

∫ ∞
−∞ exp(i (x−z)2

2t
)h(z)dz if x > 0,

F 1
5 (t)((h, k))(x) = e−i π

4√
2πt

∫ ∞
−∞ exp(i (x−z)2

2t
)k(z)dz if x < 0

and let

F 1
6 (t)(f)(x) = eiV (x)f(x), F 1T (t) = F 1

6 (t)F 1
5 (t)F4(t).

Theorem 4. For any ϕ ∈ X, t > 0 the following Feynman

formula holds: eit(ĤT +V )ϕ = limn 7→∞
(

F 1T
(

t
n

))n
ϕ в X.



Cauchy-Dirichlet problem. Let G be a domain in a

Riemannian manifold K, having the smooth boundary Γ,

let ν be the Borel measure in G, generated by the volume

formand let D be the differential operator, in the space of

functions on G, defined by Df = 1
2∆f + V f. One consider

Cauchy–Dirichlet problems for the Schrödinger equation

if ′(t) = D(f(t)) and for the heat equation f ′(t) = D(f(t));

here f : [0, a) → E = L2(G, ν), a > 0. Let DD be the

selfadjoint operator in G corresponding to. We want to find

eitDDf and etDDf), t ∈ [0, a) for any f ∈ C0 where C0

is the collection of continuous functions on G vanishing

on Γ. If ψ(= ψ(·)) is a function on G then the mapping

ϕ 7→ [G 3 x 7→ ψ(·)ϕ(·)] is also denoted by ψ.



Feynman formulae for Cauchy-Dirichlet problem.

Let gR(t, q1, q2) = e−
ρ2(q1,q2)

2t , g(t, q1, q2) = e−
‖q2−q1‖

2

2t ,

Φ(t, q1, q2) = e−
i‖q2−q1‖

2

2t , ‖ · ‖ be the norm in R
n, qj ∈ K.

For F : (0,∞) ×K ×K → C and t ∈ (0,∞) let AF (t) be

the operator in the space of complex functions on K, defined

by: (AF (t)f)(q) =
∫

K
F (t, q, q1)f(q1)ν(dq). The similar

notation is used for operators in the space of functions on G
Theorem. If K = R

n and f ∈ C0 then for any t > 0

(etDDf)(q) = lim
n→∞

(((
√

2πt/n)AgR
(t/n)e

t
n
V (·))nf)(q);

(eitDDf)(q) = lim
n→∞

(((c1(t/n)(·)AΦ(t/n)e
t
n
iV (·))nf)(q),

c−1
1 (t) =

∫

Rn Φ(t, q1, q2)dq2 (r.h.s. does not depend on q1).



Theorem. If f ∈ C0, t > 0 then:

(etDDf)(q) = lim
n→∞

c2(t, n, q)(AgR
(t/n)e

t
n
V (·))e

t
6n K

(·))nf)(q),

where (c1(t, n, q))
−1 = (AgR

(t/n))n
1)(q) and 1 is the

function on K whose values at each point are equal to 1.

(etDDf)(q) = lim
n→∞

c3(t, n, q)(Ag(t/n)e
t
n
V (·))e

t
4n K

(·)e−
t

8n
aK(·))nf)(q),

where (c3(t, n, q))
−1 = (Ag(t/n))n

1)(q).

The similar statements are valid for eitDD .



Diffusion on graphs. Let A = {(a, 0, 0) : a ∈ [0,∞},
B = {(0, a, 0) : a ∈ [0,∞)}, C = {(0, 0, a) : a ∈
[0,∞)}, G = A ∪ B ∪ C, Ĥ is a perturbation of a

symmetrical closed extension of ∆ (= d2

dx2 ) in L2(G). If V is

a bounded continuous function on(0,∞), then the operator

f 7→ Ĥf + V (·)f is also symmetrical and closed; we denote

this operator by Ĥ + V .

F2(t)(f)(x) = 1√
2πt

∫ ∞
−∞ exp(−dist(x,z)2

2t
)f(z)dz where x =

(x1, x2, x3), z = (z1, z2, z3), dist(x, z) is the distance

between x and z ; F3(t)(f)(x) = eV (x)f(x), F (t) =

F3(t)F2(t)F1(
√
t), F1 is similar to the function above for

which a similar notation is used.



Theorem 1a. For any ϕ ∈ X, t > 0 the following Feynman

formula holds: et(Ĥ+V )ϕ = limn 7→∞
(

F
(

t
n

))n
ϕ в X.

F i
2(t)(f)(x) = 1√

2πt

∫ ∞
−∞ exp(idist(x,z)2

2t
)f(z)dz where x =

(x1, x2, x3), z = (z1, z2, z3), dist(x, z) is the distance

between x and z ; F i
3(t)(f)(x) = e−iV (x)f(x), F i(t) =

F i
3(t)F

i
2(t)F1(

√
t).

Theorem 2a. For any ϕ ∈ X, t > 0 the following Feynman

formula holds: eit(Ĥ+V )ϕ = limn 7→∞
(

F i
(

t
n

))n
ϕ в X.

Problem. To define the measure and pseudomeasure in

the Feynman-Kac formulae corresponding to the Feynman

formulae in Theorems 1a and 2a.



Some historical remarks.

Configuration space Phase space

Feynman, 1942-48 Feynman, 1951

Trotter-Daleckii, 1960-61 Chernoff, 1968

E.Nelson, 1964 S.–Tokarev–Truman, 2002
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[19] S. Albeverio, Z. Brzeźniak, “Oscillatory integrals on Hilbert spaces and Schrödinger
equation with magnetic fields,” J. Math. Phys. 36 N 5, 2135–2156 (1995).

[20] G.W. Johnson, M.L. Lapidus, The Feynman integral and Feynman’s operational

calculus (Oxford Mathematical Monographs. Oxford Science Publications. The
Clarendon Press, Oxford University Press, New York, 2000).



Спасибо за внимание


