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•Техника и технология
•Перенос протона в фотокислотах
•Перенос протона в полимерной 
мембране топливного элемента
•Изучение кинетики фазового 
перехода.
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Лазерные системы на основе Ti:Сапфир – 
рабочие лошадки время- разрешенной 

спектроскопии. Осциллятор.

Лазер с широкой 
полосой усиления.

Механизм синхронизации 
лазерных мод



  

Так это выглядит. Осциллятор.



  

Лазерные системы на основе Ti:Сапфир – рабочие 
лошадки время - разрешенной спектроскопии. 

Усилитель.



  

Так это выглядит. Регенеративный усилитель.



  

Pump/Probe. Время-разрешенная спектроскопия

задержка

Источник

Суперконтинуум, фазовая само-модуляция

компьютер



  

Регенеративны
й усилитель,
600uJ/пульс

800nm, 80fsОсциллятор

OPA,
1.3,1.9um,
40uJ/пульс

2


1.

Монохроматор

Более подробно, установка pump/supercontinuum probe 

задержка
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Перенос протона в возбужденном 
состоянии фотокислот



  

Необычная динамика HPTS

• Удобное, pKa~7 
позволяет измерять pH 
внутри живых клеток.

• ΔpKa=pKa-pKa
*~6 

быстрый перенос 
протона в воде ESPT.

• Большой заряд на 
анионе: первая 
молекула с geminate 
рекомбинацией.
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Два временных масштаба в динамике HPTS в воде
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Длина волны (nm)

•Стимулированная эмиссия и поглощение возбужденного 
состояния протонированного и депротонированного 
состояний спектрально разделены.

Наведенное поглощение

Стимулированная эмиссия
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•Два временных масштаба в кинетике переноса протона наблюдаемы с 
середины 90х
•Быстрая компонента кинетики обладает изотопным эффектом (1.6).

Время (ps)

†. C. Prayer,et al. 1996

Два временных масштаба в динамике HPTS в воде

Наведенное поглощение

Стимулированная эмиссия



  

Быстрый отклик, несвязанный с растворителем.

• Метильная производная HPTS не 

демонстрирует данного отклика.
• Отклик растворителя 950 fs.

SS

S OCH3

OO

OO

O

O
O

OO

am
pl

itu
de время

200 fs

600 fs

2 ps
4 ps
9 ps

Метильная 
производная в водеHPTS в воде



  

• Отклик отсутствует в 
растворителях, где перенос 
протона подавлен.
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HPTS в воде HPTS в метаноле

Быстрый отклик, несвязанный с растворителем.

время



  

    Возможно отделить отклик 
растворителя от кинетики 
переноса протона.
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Комбинация отклика 
растворителя и переноса 
протона.

Быстрый отклик, несвязанный с растворителем.



  

Отдельно отклик растворителя и перенос протона.

Отклик растворителя,
HPTS, MPTS

Перенос протона,
только HPTS 



  

ESPT в наноструктурированной среде: 
Способ измерения эффективности 

протонного транспорта.



  

Полимерная мембрана. Электролит топливного элемента.

Hoogers, Gregor. ed. Fuel Cell Technology Handbook. 
Boca Raton:  CRC Press, 2003.



  Hydrophobic fluorocarbon backboneHydrophobic fluorocarbon backbone

Структура полимера Нафиона.

--[(CF2-CF2)n-CF-CF2]m--

O-CF2-CF-O-CF2-CF2-SO3
-M+

CF3

Повторяющаяся  структура полимера

Гидрофильные области

-
3

# of waters

SO group
 

n=7, m~1000



  

AOT обратные мицеллы: модельные системы
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Структура Аэрозоль-OT (AOT)

Hydrophilic domain

--[(CF2-CF2)n-CF-CF2]m--

O-CF2-CF-O-CF2-CF2-SO3
-M+

CF3

n=7, m~1000

-
3

# of waters

SO group
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Повторяющаяся  структура полимера
Нафион



  

Размер обратной мицеллы AOT

2 1.7 40

5 2.3 300

10 4.0 1,000

20 7.0 5,400

40 17 7,700

60 28 350,000

λ d(nm) # H2O



  

Фотокислота:  HPTS

8-hydroxypyrene-1,3,6-trisulfonate (HPTS)

pKa в основном состоянии = 7.7

pKa в возбужденном состоянии ~ 0.7
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λ = 2.5

λ = 3.5

λ = 5
λ = 6

λ = 8

Длина волны (nm)

вода

λ= 1

λ = 2

λ = 3
λ = 4
λ = 5
λ = 7
λ = 10

λ = 1

λ = 20 & вода

AOT Мицелла Нафион

Длина волны (nm)

Spry et. al, JACS, 2007, ASAP

Стационарная флуоресценция 

•Перенос протона происходит легче при большей гидрации.

•Качественное соответствие Нафиона и АОТ при одинаковом 
уровне гидрации.

•Результаты сходятся к воде при λ=20

протонированное депротонированное протонированное депротонированное



  

Вода: Чувствительность к окружению

v = 0
v = 1

Свободный
гидроксил

DO

v = 1
v = 0

Гидроксил в 
Присутствии 
водородной связи

ODO
Водородная связь – 
удлиняет O-D связь.
Открывает потенциал.
Вибрации сдвигаются
в красную область.

Газовая фаза O-D:  2724 cm-1 Вода O-D:  2509 cm-1

•  Свойства HOD в H2O изменяются в 
зависимости от структуры и динамики 
окружающей воды
•  Частота перехода чувствительна к локальному 
окружению молекулы HOD.



  

• OH колебание 
сдвигается в голубую 
область (более 
коротких длин волн).

• Данный сдвиг 
свидетельствует о 
нарушении в структуре 
водородных связей.

Свойства воды изменяются в наноструктурированной 
среде.
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

Переориентация молекул замедляется в 
наноструктурированной среде.

Water
λ = 60
λ = 40 
λ = 20

Water
λ = 10
λ = 5 
λ = 2

Анизотропия воды в AOT

   
2

2

2 2 3 ( ( )) 1

5 5 2

cos t
r c tt

 
 


 



observe OH stretch

J. Phys. Chem. A., 110, 4985 (2006) 
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Поляризационно селективный pump-probe.

Электромагнитная  волна
 поляризована

Молекулы с выделенной осью 
дипольного момента перехода  
свободно движутся в растворе
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Анизотропное 
распределение 
диполей постепенно 
исчезает

Время

Параллельное

Ортогональное

“Волшебное”

Наведенное поглощение
“Magic” геометрия
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20 & bulk water

t (ns)

HPTS анизотропия в AOT

Water
λ = 10
λ = 5 
λ = 2

Анизотропия воды в AOT

Water
λ = 60
λ = 40 
λ = 20

Переориентация молекул замедляется в 
наноструктурированной среде



  
t (ns)

Асимптотическое поведение

•Экспоненциальный спад на коротких временах (одномолекулярная 
диссоциация)
•Степенной закон на длинных временах (геминантная рекомбинация)
•В сплошной воде спад  t-3/2

t-3/2
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bulk water



  
t (ns)

bulk water

t-3/2

t-0.8

Неизменная динамика
(similar water environment by 
IR studies)

Эффект 
конечного 
размера

λ=20

Асимптотическое поведение
•Экспоненциальный спад на коротких временах (одномолекулярная 
диссоциация)
•Степенной закон на длинных временах (геминантная рекомбинация)
•В сплошной воде спад  t-3/2 в мицеллах t-0.8 
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micelle radius~3.5 nm

t (ns)

bulk water

λ=20

t-3/2

t-0.8

Диффузия протона в 1 
ns ~3 nm

Асимптотическое поведение
•Экспоненциальный спад на коротких временах (одномолекулярная 
диссоциация)
•Степенной закон на длинных временах (геминантная рекомбинация)
•В сплошной воде спад  t-3/2 в мицеллах t-0.8 
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t (ns)

bulk water
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Асимптотическое поведение
•Экспоненциальный спад на коротких временах (одномолекулярная 
диссоциация)
•Степенной закон на длинных временах (геминантная рекомбинация)
•В сплошной воде спад  t-3/2 в мицеллах t-0.8 



  

Полу-эмпирическая модель переноса протона
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Hong et. al, J. Phys. Chem, 1978, 68, 5163 

находим “размерность” для 
согласования с 
экспериментом

Кинетические уравнения



  

Похожая динамика в AOT и Нафионе
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•Модель (сплошная) в свертке с откликом инструмента
•Похожие константы скоростей для одинакового содержания воды



  

• Динамика переноса протона существенно 
изменяется в наноструктурированной среде.

• Изменения связанны как с изменением свойств 
воды так и с ограничением объема реакции.

• Близкие скорости депротонации HPTS в Нафионе 
и АОТ при одинаковом уровне гидрации.

• In both Nafion and AOT, proton transport results in a 
t-0.8 decay opposed to the t-3/2 power law in bulk water.

Фрактальная диффузия? 



  

Кинетика фазового
перехода



  

Фазовые переходы – один из видов самоорганизации
Поиск и релаксация к новому равновесному состоянию

Ядерная материя.
Nuclear matter

Конденсированное состояние
Condensed matter

Крупно-масштабная 
структура вселенной

Биология. Протеины. 
Lipid rafts.



  

Olivier Dauchot (CEA Saclay) 

Перемешивание в 
микрофлюидике.Полимерные 

солнечные батареи

Peter Peumans group at 
Stanford

Ближе к практике.



  

Фазовые переходы в жидкостях.

Параметр порядка – Плотность.

Другой пример – двухкомпонентные смеси.

Параметр порядка – разница в составе.



  

Что мы можем сказать о пространственной 
организации и динамике фазового перехода ?
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Модель Кана-Хилларда Беккер, Доринг.
 Нуклеация и рост.
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Animation by Alexander Wagner, University of North Dakota

Неустойчивость с волновым 
вектором q экспоненциально 
нарастает с характерным 
временем    1

Количество ядер новой фазы с 
характерным размером L
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Demixed State
Uniform State

Информация о пространственной организации 
фазового перехода? Перенос оптического 

возбуждения в смеси с нижней критической 
температурой.

Water/2,6-dimethylpyridine   (2,6-lutidine) 



  

Каковы пространственные и временные масштабы?

0ns 5ns 20ns



  

Вода/2,6-диметилпиридин.

Grattoni, et. al. J. Chem. Eng. Data 1993, 38, 516-519

Planas, et. al. Journal of Molecular Structure  787 (2006) 121-126

Фазовая диаграмма –инвертирована. Для инициации 
возможно использовать лазерный температурный скачок



  

Какова причина фазового расслоения при повышении 
температуры?

Холодная денатурация протеинов.

R.M. Ballew, et. al. PNAS 93, 5759-5764 (1996)
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Light phase
Heavy phase
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Необходимы молекулы, привязанные к своим фазам.

Coumarin 480

Длина волны, nm Длина волны, nm
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Acceptor absorption
Donor Emission

Обладают способностью к обмену электронным 
возбуждением в однородной фазе.

Скорость передачи оптического 
возбуждения (Форстер)
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Кинетика спадания флуоресценции, как функция 
температуры.
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Измерение в глицерине. Доноры и акцепторы зафиксированы.
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Температурный скачок.
 Время-разрешенная флуоресценция .

Осциллятор

800nm, 80fs
Регенеративный

усилитель,
300uJ/пульс

OPA,
2.5-4um,

9uJ/пульс

405nm diode
laser

Flip up

Фотоумножитель

Интерференционный
фильтр, 440nm

Монохроматор

MCT

Vis-IR co-alignment

Оцифровывание
кинетики



  

Оптический параметрический усилитель на 
основе BBO/KTA

Sapphire

2



2



2


Первая ступень

Вторая
ступень

Третья
ступень



  

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 104

0

0.5

1

1.5

2

2.5

3

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 104

0

0.5

1

1.5

2

2.5

3

 

 
222
228
232
240
252

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 104

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

 

 
222
228
232
240
252

Длительная кинетика, 0-50 микросекунд

0         10        20        30        40        50

Время, .s
0         10        20        30        40        50

0         10        20        30        40        50

.s

.s

[A]=
=50mM [A]/2

[A]/4

6.6
11.7
22.1
32.2
40.5

Время, 

Время, 



  0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
-0.2

0

0.2

0.4

0.6

0.8

1

1.2

 

 
222
228
232
240
252

1.00
1.77
3.35
4.88
6.14

500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

0.5

1

1.5

2

2.5

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

0

0.5

1

1.5

2

2.5

3

 

 

222
228
232
240
252

[A]=
=50mM

[A]/2

[A]/4

Промежуточный временной масштаб, 0-5 микросекунд

0           1           2          3          4           5

0          1           2          3          4            5.s
0          1           2          3          4            5

.s

.s

1.00
1.77
3.35
4.88
6.14

6.6
11.7
22.1
32.2
40.5

Время, Время, 

Время, 



  

500 550 600 650 700 750 800 850 900 950 1000
-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

 

 

222
228
232
240
252

Время, ns.

[A]/4

6.6
11.7
22.1
32.2
40.5

Короткий временной масштаб, 0.5-1 микросекунд



  

Теоретическая модель передачи возбуждения 
при разделении фаз.
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Photoinduced electron transfer.

Relaxation channel of great practical importance
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Using single pair survival probabilities, diffusion,
Pair distribution.
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Electron transfer rate, Marcus Equation
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Electron transfer pair – Rhodamin 3B,
N,N-dimethylaniline.
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Transient absorption difference spectra
8 ps delay, solvent – acetonitrile.
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Donor in pure acceptor. 

Excited state is 
rapidly depleted.

Wavelength, nm



  

Kinetics of the electron 
transfer/recombination in pure acceptor

Jf=50 cm-1

K=100ns-1

Electronic coupling matrix 
element

Electron transfer rate at the 
contact

Time, ps

Time, ps



  

Anisotropy of the electron transfer

Time, ps

Anisotropic
excitation

Anisotropic
transfer

Anisotropic
probing



  

Coumarin 152 (C152) and nearest-neighbor 
DMA solvent molecules.

Gray < 50 cm-1
Yellow  ~ 50 and 100 cm-1, 
Orange ~ 100 and 150 cm-1
Red > 150 cm-1.

E.W. Castner, et.al. J. Phys. Chem. A, 104, 2869 (2000)



  

Electron transfer in polar liquids.

Acetonitrile

Butyronitrile

Benzonitrile

http://en.wikipedia.org/wiki/Image:Benzonitrile.svg
http://en.wikipedia.org/wiki/Image:Acetonitrile-skeletal.png
http://en.wikipedia.org/wiki/Image:Butyronitrile.png


  

Extracting the amount of the charge 
transferred state from spectra
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Forward electron transfer.

Acetonitrile
Jf =155

Butyronitrile
Jf =85

Benzonitrile
Jf =55

Excited state
population

Acceptor concentration
independent form
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Geminate recombination.
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Effective matrix element depends on viscosity.
Combined effect of diffusion and angular degrees of freedom

  0,
1

2

2
2

2



















Srk
S

D
r

S
r

rr
D f 



    0,1
1

2

2
2

2



















Srk
S

D
r

S
r

rr
D f 


 

  0,

1

1
2

2
2

2






























Srk
S

D
r

S
r

rr
D f 






 

    













 
























 








rwr
r

rw
A

rwr
rAk f

1
expexp

2
1

1
expexp

0

0

 








rw
AA oldnew 2

1


Survival probability in the 
steady-state diffusion controlled 
regime

Let’s scale up the 
rotational diffusion 
constant by 

Absorb scaling into the 
angular variable .

How does the rate changes?



  

A. I. Burshtein and B. I. Yakobson, Chem. Phys. 28, 415 1978.

V. S. Gladkikh and A. I. Burshtein, J. Chem. Phys. 126, 014506 2007

Chemical anisotropy.

Reactive spot model.
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Phase transition in confinement.

Vycor glass



  



  



  

Информация о пространственном распределении из 
данных о передаче возбуждения.

              AADAADDD drrrtwrCrdrtF exp1exp 

Предел малых концентраций

             AADensembleAADDD drrrtwrrdrCtF exp11 

Конволюция, используем 
преобразование Фурье

Пространственная корреляция
донора-акцептора

Донор и акцептор движутся независимо    AAADDA rrr
  ,
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Suppose that we are in the regime, where dye 
concentrations are not very far away from the uniform 
state
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