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CopaepxxaHue

*TexHuKa 1 TexHonorng

*[lepeHoC npoTOHAa B pOTOKMCNOTaX
*[lepeHoc npoTOHa B NONIMMEPHON
MemMbpaHe TOMNMBHOIoO 3reMeHTa
*I3yyeHne KNHeTukn qas3oBoro
nepexona.




JlasepHble cuctembl Ha ocHoBe Ti:Candoup —
pabo4yme nowaagkm BpemMsi- paspeLleHHON
cnekTpockonuu. OcumnnaTtop.

MexaHn3mM CUHXpPOHU3aunm

J1lazep c wmnpokom
nasepHbIX Mof

NOMOCOWN yCUIEeHUS.
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Tak ato BbIrnaauT. OcumnnaTop.

Ti:sapphire crystal



INasepHble cuctembl Ha ocHoBe Ti:Candup — paboumne
nowagku Bpems - paspeLleHHOW CeKTPOCKOMuN.
Yeunurtens.

Initial short pulse A pair of gratings disperses

the spectrum and stretches

,/\_ / - the pulse by a factor
/ of a thousand

Short-pulse oscillator

The pulse is now long l

and low power, safe

for amplification

. -

High energy pulse after amplification ”

Power amplifiers

~-J L

Resulting high-energy,
ultrashort pulse

A second pair of gratings
reverses the dispersion of the
first pair, and recompresses the pulse.



~Tak a10 BbIMAAUT. PereHepaTuBHbIM YCUNUTENb.




Pump/Probe. Bpemsa-pa3pelueHHasa cnekTpocKonus
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bonee noapobHo, ycTaHOBKa pump/supercontinuum probe
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IIepeHoCc mpoTOHA B BO30YKJICHHOM
COCTOSTHUH (DOTOKHUCJIOT




HeoOpruyaasa nuaamuka HPTS

* Ynob6Hoe, pK ~7

N //O
[I03BOJISIET U3MEPATh pH 7 ‘ >
BHYTPH JKUBBIX KJIETOK. ‘O
* ApK=pK,-pK,~6
s A} 4
OBICTPBIN IEPEHOC X o

poToHa B Bojge ESPT. HPTS

* bombmon 3apsg Ha 12
aHHOHE: IIepBas |
MOJIEKYJIa ¢ geminate
PEKOMOMHALIMEH.
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JIBa BpeMeHHBIX MaciuTada B quHamuke HPTS B Bojie

*CTUMYIUPOBAHHAS SMHUCCHS U MOIIOILIECHUE BO30YKIEHHOIO
COCTOSIHHASL TPOTOHUPOBAHHOTO U AeMPOTOHMPOBAHHOIO
COCTOSAHUN CNeKTpalryibHO pa3aesieHbhbl.

' MMPOTOHHPOBAHHOE
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[1Ba BpeMeHHbIX MacwTaba B auHamuke HPTS B Boge

*J/[Ba Bp€eMEHHBIX MacIITa0a B KHHETUKE MTEPEHOCA MPOTOHA HAOIIOAAEMBI C

cepeannbl 90x
*brIcTpas KOMIIOHEHTA KUHETUKHU 00JIafaeT N30TONHBIM dpdextom (1.6).

Hasenennoe norsoienue

il 435 nm

-, CrumynupoBanHas SMUCCHS

400 450 500 550 600 650
Bpems (ps) [nwvHa BorHbI (Nm)

7. C. Prayer,et al. 1996




BBICTPBIN OTKJIMK, HECBI3AHHBIN C PACTBOPUTEIIEM.

*  Merunbnas npoussogaas HPTS ue

JEMOHCTPUPYET JAHHOT'O OTKJIMKA.

*  Orxiuk pactsoputens 950 fs.
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BbICTPbIN OTKNUK, HECBA3AHHbLIN C PAaCTBOPUTENEM.

* OTKIIMK OTCYTCTBYET B
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BbICTPbIN OTKNUK, HECBA3AHHbLIN C PAaCTBOPUTENEM.

B03MOXHO OTAEIUTH OTKJIMK __ 10FA Rk
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OTI[GJIBHO OTKJIHUK PACTBOPUTCII U IICPCHOC IIPOTOHA.

OTKJIMK pacTBOPUTEIIS, [lepeHOoC NpOTOHa,
HPTS, MPTS toisko HPTS
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ESPT B HAQHOCTPYKTYypUpOBaHHOWU cpee:
Cnocob namepeHnsa apPeKTUBHOCTH
NMPOTOHHOIO TPaHCcMopTa.




[TormmmepHasa MeMOpaHa. DJIEKTPOIUT TOIUTMBHOTO 3JIEMEHTA.
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Hoogers, Gregor. ed. Fuel Cell Technology Handbook.

Boca Raton: CRC Press, 2003.



Crpykrypa nonumepa Hadpuona.

# of waters
IloBTOpsIIOIIAsICST CTPYKTYpa MoJIUMepa A= -
000 SO; group
—-[(CF~CF,) -CF-CF,] - =7, m=
O-CF,-CF-O-CF,-CF -SO ' M* ['uapodunbHble 00IaCcTH

Hydrophobic fluorocarbon backbone




AOT oOparHbI€ MULICIJIBL: MOJICJIBHBIE CHCTEMBI

Crpykrypa A3po30a6-OT (AOT)

/\/\l/\o
f—oo_ M
(0)

IHoBTOpPAAKOIIAsACA CTPYKTYypa mojumMmepa
Haduon

~[(CF,-CF)),-CF-CF,] - n=7, m~1000

O-CF,-CF-O-CF,-CF,-SO, M*

CF,

__# of waters

) =
SO; group

d,, =034 +1.1(nm)




Pa3smep oOpaTHOI MHUIICIIIBI AOT

A dmom) #H,0
2 1.7 40

5 2.3 300

10 4.0 1,000

20 7.0 5,400

40 17 7,700

60 28 | 350,000




dorokuciaora: HPTS

pKa B 0CHOBHOM cocTOsIHUM = 7.7

pKa B B030yxkaeHHOM cocTostHum ~ (.7

R*OH- = = RO + H'

k., ()

8-hydroxypyrene-1,3,6-trisulfonate (HPTS)



CramoHnapHas (hJIyopeCUeHIs

AOT Munenna Haduon

HIIPOTOHUPOBAHHOC JIEPOTOHUPOBAHHOE IIPOTOHUPOBAHHOE JIEIPOTOHUPOBAHHOE

i - _- ___ — | / z -
Lo ).“_ |20 .&’ RoAa |, ., L, BOAQ ., o . 4
400 425 450 475 500 525 550 575 600 400 425 450 475 500 525 550 575 600

JInrHa BOJIHBI (nm) JInrHa BOJHEI (nm)

]I IepeHOC IIpOTOHA TPOUCXOAUT JIErye Npy OOJIbIIECH THAPALIUH.

*KadectBenHoe coorBeTcTBue Hadmona u AOT npu ogruHAaKOBOM
YPOBHE THIPAINH.

*PesynbTarhl cxoasiTces K Boae npu A=20
Spry et. al, JACS, 2007, ASAP



Boaa: HyBCTBUTEIBHOCTh K OKPYXKEHUIO

CBo0OOaHBIN I'mapokcua B

THIPOKCHUIT O—D """" O IpucyrcrBumn
BOJOPOAHOI CBA3U
O—D / A0POAa
Boxopoanas cBa3b —
yajaunsetr O-D cBa3b.

OTKpbIBaET MOTEHIUAJL.
Bubpauum caBurarorcs,
B KPaCHYIO 00J1aCTh. v
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I'azoBas ¢aza O-D: 2724 cm! Boaxa O-D: 2509 cm™!

« Cpouictea HOD B H,O usmeHnstorc B

3aBUCUMOCTH OT CTPYKTYPbI U TMHAMUKHU
OKPYXKarOIEU BOIbI

* Yacrora nepexoia 4yBCTBUTENIbHA K JIOKAJIIbHOMY
OKpYKeHHUI0 MOoJieKyJibl HOD.



CBOMCTBA BOABI UBMEHSAKOTCS B HAHOCTPYKTYPUPOBAHHOU
cpene.
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[lepeopueHTanus MOJIEKYJ 3aMEJJISETCS B
HAHOCTPYKTYPUPOBAHHOU CPEJIE.

() (anisotropic pump-probe signal)

r(#) (anisotropic pump-probe signal)

0.4

Anmzorponus Boasl B AOT

Water
A=60
A=40
A=20

O PD>o O

0 [ observe OH stretch

l"(t) =§cz (t) =§[ 3COS2(§(1‘)) -1 ]

J. Phys. Chem. A., 110, 4985 (2006)



[TonapusaunoHHO CeNEKTUBHbLIN pump-probe.

Monekyrsibl C BblAeSIEHHOW OCblO
ANNoribHOro MOMeHTa nepexoaa
cBODOOHO OABUXYTCS cTBOpe

AnekTpoMarHMTHas BOfHa
nonsipu3oBaHa
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[lepeopumeHTaumna Monekyn sameansaeTrca B
HaHOCTPYKTYpUpOBaHHOWU cpefe

() (anisotropic pump-probe signal)

r(#) (anisotropic pump-probe signal)
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ACUMIITOTUYECKOE ITOBEICHUE

*KCIMOHEHIMAJIBHBIN CITaJl HA KOPOTKHUX BpEMEHaX (OJHOMOJICKYJISIpHAs
JYCCOLIMAIIHS)

*CTEeNEeHHOM 3aKOH Ha JJIMHHBIX BpeMeHaX (T€MUHAHTHAS PEKOMOUHAITHS )
*B crutomHOM Bojie criag t3/2
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ACUMITOTUYECKOE ITOBENECHUE

*KCIMOHEHIMAIBHBIN CI1aJl HA KOPOTKHUX BpeMEHaxX (OJHOMOJICKYJIsIpHAs
JYICCOLIAIIHS)

*CTEeNEeHHOM 3aKOH Ha JIJIMHHBIX BpeMeHaX (FT€MUHAHTHASI PEKOMOUHAIIHS )
*B cruromrHoi Boae cran t2 B muneiax t08
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ACUMITOTUYECKOE ITOBENECHUE

*KCIMOHEHIMAIBHBIN CI1aJl HA KOPOTKHUX BpeMEHaxX (OJHOMOJICKYJIsIpHAs
JYICCOLIAIIHS)

*CTEeNEeHHOM 3aKOH Ha JIJIMHHBIX BpeMeHaX (FT€MUHAHTHASI PEKOMOUHAIIHS )
*B cruromrHoi Boae cran t2 B muneiax t08
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ACUMITOTUYECKOE ITOBENECHUE

*KCIMOHEHIMAIBHBIN CI1aJl HA KOPOTKHUX BpeMEHaxX (OJHOMOJICKYJIsIpHAs
JYICCOLIAIIHS)

*CTEeNEeHHOM 3aKOH Ha JIJIMHHBIX BpeMeHaX (FT€MUHAHTHASI PEKOMOUHAIIHS )
*B cruromrHoi Boae cran t2 B muneiax t08
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[lony-smnupuyeckas MOIEb EPEHOCA IIPOTOHA

ki

ko (1)

HAaXOJIUM “‘pa3MEpHOCTh’ IS
COIJIACOBAHHUA C
EPUMEHTOM

k., (1) :k-lt_n/z

KuHeTndecknue ypaBHEHUSA

R'OH. » R'O+H"

d|RO'H| * *
” |k k.t |RO™| |[|ROH]

d|RO" | ko -kt |RO"| || [RO"
dt

Hong et. al, J. Phys. Chem, 1978, 68, 5163



[Toxoxas nuHamuka B AOT u Haduone

*Mopesnb (CIUIONIHAsA) B CBEPTKE C OTKJIMKOM MHCTPYMEHTA
*[Iox0kHe KOHCTAaHThI CKOPOCTEN IUISI OAUHAKOBOTO COJICPKAHUS BObI
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JlnHaMuKa repeHoca mpoToHa CyIeCTBEHHO
U3MEHSAETCA B HAHOCTPYKTYPUPOBAHHOU CPEJIE.

3MeHeHus CBS3aHHBI KaK ¢ U3MEHEHUEM CBOMCTB
BOJIbI TAK 1 C OTPaHUYCHUEM 00bEMa PEAKINH.

bimskue ckopoctu aecnporoHanuu HPTS B Haduone
1 AOT npu 0OAMHAKOBOM YPOBHE T'HIPALNH.

In both Nafion and AOT, proton transport results 1in a
t0¢ decay opposed to the t*2 power law 1n bulk water.

OpakranpHas gupPy3usa?



KnHeTtunka gpasoBoro
nepexoaa




da3oBble nepexogbl — ogmMH M3 BnNaoB CaMoopraHn3auunm
[Tonck n pejiakCaunAd K HOBOMY paBHOBECHOMY COCTOAHUIC

__ AnepHaa matepus.
P —Q Nuclear matter

Fis=zion l

KoHOoeHCcnpoBaHHOE COCTOSIHUE
Condensed matter

Representative starting structures
A
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sition

@ buonorus. lNpoTenHsl.
Lipid rafts. l

KpynHo-macLutabHas
CTPYKTypa BCENeHHON




bnunxe K npakTuke.

[lepemeluBaHue B

[TlonumepHblie
MUKpOIrouanKe.

CONnHeYHble baTapeun

Nanostructured Solar Cell Model

Peter Peumans group at
Stanford

.‘ 100 microns




daszoBble nepexoabl B XUOKOCTAX.

Pressure

solid liquid
melfing critical point
. T
freeging . A
vaporisation
congensation
triple point
sublinfation
eposition gas
Temperature

[NMapameTp nopsaka — NNOTHOCTb.

Opyroi npyumep — ABYXKOMMOHEHTHbIE CMECH.

\4

MapameTp nopsiaka — pasHuLa B cocTaBe.



Y10 Mbl MOXEM cKkas3aTb O MPOCTPAHCTBEHHOM

Mopgenb KaHa-Xunnapaa

y(g)=A|a(T - Tc)q? +§q4

HeycToNYMBOCTb C BOMHOBBLIM
BEKTOPOM g 3KCMOHEHLMaNbHO
HapacTaeT C XapaKTepHbIM
BpemeHem 1/y

Bekkep, [JOpUHT.
Hykneauusa n pocr.

on, ) _ 0
ot 0l

RTINS () WS
k,T ol ol

KonnuectBo sgep HoBoW pasbl C
XapakTepHbIM pasmepom L

Animation by Alexander Wagner, University of North Dakota



IHdbopMmaLums o NPOCTPaHCTBEHHOM OpraHu3aLun
doa3oBoro nepexoga? [lepeHoc oNTUYECKOro
BO30Y>XOEHNA B CMECU C HUXKHEN KPUTNYECKOU
TemnepaTypou.
Water/2,6-dimethylpyridine (2,6-lutidine)

| _ — Derhixed State |
/ 08 — Uniform State ||

TemnepaTtypa

CocTas




KakoBbl MpOCTPaHCTBEHHbIE U BPEMEHHbIE MacLUTa0bI?

Ty rrrrpotTTTa Ll | IIG

Baaden et al. TAEAMIZAWA ef al
J. Phys. Chem. B 2002, 108, 434—441 PHYSICAL REVIEW E 68, 020501(R) (2003)

Ons .. 5ns 20ns
Stewert J. Marrnk, J. Am. Chem. Sec. 2001, 123, 8638—8639



Bona/2,6-gumetnnnnpuanH.

0
H O

H.C N CH

3 3

daszoBas gnarpamma —MHBepTMpoBaHa. [na nHmymaumm
BO3MOYXHO MCMOJIb30BaTh Nla3epHbI TeMNepaTypHbIN CKa4yok

B0

&
=
tw:rit
7 2 Cepjt 0 80 &0
100 w Planas, et. al. Journal of Molecular Structure 787 (2006) 121-126
L

Grattoni, et. al. J. Chem. Eng. Data 1993, 38, 516-519



KakoBa npuinHa ba3oBoro paccrioeHunsi npu NoBbILLEHUN
Te M I-I e paTyp bl ? HYDROPHOBIC FORCES

XonogHaqa geHartypauusa npoTenHoB.

0 20 40 60 80
Temperature, °C

R.M. Ballew, et. al. PNAS 93, 5759-5764 (1996)



Heobxoaumbl MONEKynbl, NPUBS3aHHbIE K CBOMM (hasam.

Pa3znenenue moHopa
Fomy phass
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ObnapgatoT cnOCODOHOCTHLIO K OOMEHY 3NEKTPOHHbBIM
BO30OYyXXOeHMneM B ogHopoaHoOu dhase.

2.5

Acceptor absorption
Donor Emission

1.51 / ‘\“ \\ \\
[ |
| |
\

L “‘\
| ‘\‘\
05| ~o N
\ \\\\

= 1 L 1 | L |
350 400 450 500 550 600

[1nnHa BOrHbI, NM

650

700

CkopocCTb nepeaaym onTUYECKoro
BO30yxaeHuna (Popctep)

R\
r

k,G)=1

T

7  Bpems Xu3Hu donyopecueHunm
R, XapakTepHoe paccTosiHue
nepenayu

R, ~ ¢ fDe(A)AA(A)dA



KMHEeTMKa cnagaHusa oriyopecueHunn, Kak QyHKLNA
TemMnepaTypbl.

Bpems, ns.

1.5

Order parameter

1.5



0.9L

0.8}

0.71

0.6

051

0.4}

0.31

0.21

0.1}

N3mepeHune paccTosaHmMA nepegayvm Bo30yKaeHus.

N3mepeHne B rmuuepuHe. [JoHOPbI 1 akuenTopbl 3adoMKCMpoBaHbI.

I(Z)DA :exp[- L. 2)/{L |

5 5

7, =47 ns  Bpems KU3HU
R, =3.3nm dopCTEpOBCKOE paccTosaHue

Bpewms, ns. Bpewms, ns.



TemnepaTypHbIN CKaYoK.
Bpems-paspelieHHaa donyopecueHums .

NHTepdepeHUNOHHbIN
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OnTnyeckMn napameTpUYecKUn yCcunuTenb Ha
ocHoBe BBO/KTA

[MepBaga cTyneHb
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[OnutenbHasa kuHeTuka, 0-50 MrukpocekyHA
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KopoTkun BpemeHHoU Mmacwitab, 0.5-1 MmukpocekyHa
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TeopeTnyeckass Mogernb rnepenayn Bo30yXaeHus
npu pasgeneHun gas.
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BepossTHOCTHOE onncaHue nonoXxeHusa goHopa/akuenTop:
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TeopeTnyeckaa annpokcmmaymsa.
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Photoinduced electron transfer.

Relaxation channel of great practical importance

PHOTONS




Starting point — Solid Solution

P 4 -
dP, l+Zkf(r,~)}Pex
T i

dt

P! - -
Fe —t 6P, - k,GR,

dt l
P, () =exp(- t/r<exp Zn‘ k, (1:;)]>
<dPC§(z)

2O < on ) - k60,

~
\\

1 S

1 S

1 RS

1 S

1 RES

1 Se
1
1

Inokuti-Hirayama averaging, thermodynamic limit, for the
population of the excited state,

P () =exp( ¢/7)exp

a(P, )

dt

: 4;zco](1- expl &, GX2ar

(P10 = [, Dexple £, 6Xe- DR, 6 M

=L =, 6P, O k, 6P, 0) |

Survival of the charge

Survival of the excited transferred state

state



Using single pair survival probabilities, diffusion,

Pair distribution.
)=r:5,.{r,)- k,Gs,.{r,)
:_zexp(mo D2| D exple V6D

47C j[l S(t‘ro ]ro g(r )dro

P ()= =exp| -

—|exp| -
T

P. ) =4aC f fSCT Ir )5, @l I, G e g Gy e, G D,

49 kf(r), kb (r) Forward transfer and recombination rates
) g(r) Pair distribution,
E 2_']'.| correlated positions D(r):D[l_ lexp r - r]
\ 2 o
14 I"nk /’ﬁ\._ﬁ___.,-f'x..___r—__ S
_ Hydrodynamic effect,
o 8 10 12 14 16 18 20 2 correlated motions.
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Electron transfer rate, Marcus Equation

.
~ - - Dipoles of the solvent
-, are equilibrated
o=
A
“ o~ nce we transfer the :
— @ electron dipoles are , §
. - Y Still equilibrated but I |
$ with old charge -2 0 2 4
© distribution.-> Barrier
27T 5 ( ) (AGf + ﬂs (I”))2
kf(r)z Jexpl [ rlexp| -
NEEZH O 42 G, T
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Electron transfer pair — Rhodamin 3B,
N,N-dimethylaniline.

Spectral properties of the
Rhodamine 3B

1L
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Transient absorption difference spectra

8 ps delay, solvent — acetonitrile.
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Kinetics of the electron
transfer/recombination in pure acceptor

0.6 (a)

Electronic coupling matrix
element
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0.3

Anisotropy of the electron transfer
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Coumarin 152 (C152) and nearest-neighbc
DMA solvent molecules.

Gray < 50 cm-1

Yellow ~ 50 and 100 cm-1,
Orange ~ 100 and 150 cm-1
Red > 150 cm-1.

E.W. Castner, et.al. J. Phys. Chem. A, 104, 2869 (2000)



Electron transfer in polar liquids.

=N Acetonitrile
o N
/\/’ (g s
Butyronitrile
2
Benzonitrile
7 Ty . e Dy 'Dmdb
Salvent e, e, (cF) (") (™) (Al (AZins) (AZins)
Acetonitrile A6A .58 054 52 —42 A6 440 80
Eutyraonitrile 209 .4 .62 1135 —1 10 3.7 240 210
Eenzonitrile 254 25 .27 [ D] —11 4.5 120 106

"Donor-acceptor (R3BT—DMAM diffusion constant.
PRadical pair (R3B-DRAS) diffusion constant.


http://en.wikipedia.org/wiki/Image:Benzonitrile.svg
http://en.wikipedia.org/wiki/Image:Acetonitrile-skeletal.png
http://en.wikipedia.org/wiki/Image:Butyronitrile.png

change in absorbance
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Extracting the amount of the charge
transferred state from spectra
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Correlated detection
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Forward electron transfer.

Excited state ~ Acceptor concentration
population independent form

10

Acetonitrile
Jf =155

Butyronitrile
Jf =85

Benzonitrile
Jf =55

0 100 200 300 400 0 100 200 300 400

Time, ps Time, ps



Geminate recombination.
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Effective matrix element depends on viscosity.

Combined effect of diffusion and angular degrees of freedom

1 6 oS LERY () Survival probability in the
PP [’” o +D, 6¢ -k b plS =0 steady-state diffusion controlled
N regime
Let’s scale up the 1 8,08 0%S
rotational diffusion Dr—za[ i o +(+a) D, Py kf(r,Cﬂ)S =0
constant by o
g S
1 0f ,08 oS
PEIPW r Fn tD, -k, G, ¢)5 =0 Absorb scaling into the
) angular variable .
Vl+a
How does the rate changes? l
= - r - L N
kf Aexp A exp G ¢‘ - Anew _ Aold 1+qb
] | ZW(V)
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Chemical anisotropy.

W, (o), 1/ns

Reactive spot model.

g 1| const

rotational control

H"IIH: ." ) ] -5 TN n
| + w il —ghm

WS kinetic lumit.

V. S. Gladkikh and A. I. Burshtein, J. Chem. Phys. 126, 014506 2007
A. |. Burshtein and B. |. Yakobson, Chem. Phys. 28, 415 1978.
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PMT

Acceptor affinity to polar phase

Intensity
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Phase transition in confinement.

Vycor glass
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MHdopmaumna o NpoCcTpaHCTBEHHOM pacnpeneneHnm us
OaHHbIX O nepegade Bo30yXxaeHus.

NoHOop 1 aKuenTop OBUXYTCA HE3aBUCUMO P 4p (rD Ny ) =P, (rA )
F@)= J'er[pD(rD )exp(— Cf,OA(rAXl- expl- m(r, -Vr<)))drA}
[penen manbix KOHUEHTpaumm KoHBoOMoLMS, MCNonb3yem
[1IpocTpaHCcTBEHHAsA Koppenauums npeobpasoBatie dypee
[oHOpa-akLenTopa & /

FO=1- C fry| [105 0 00,6, G- expl o, - r Wi, |

ensemble

Suppose that we are in the regime, where dye
concentrations are not very far away from the uniform
state

pD(rD):exp(- aDc(rD ) ~1- aDc(rD),
,OA(rA):exp(- aAc(rA)) ~] - aAc(rA)
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