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FIG. 2. Melting temperatures of nitrogen at high pressures up
to 71 GPa. Dots are data from this work. Open squares are data
from Young er al. [15]. Solid lines are linear least square fits to
our data.
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FIG. 3. Proposed nitrogen phase diagram. The solid line traces
the experimental melting curve with results from this work
(closed circles) and from Young ef al. [15] (open squares).
The reported molecular liquid to polymeric liquid transition is
shown by the dot-dash curve [10], which passes through the
point labeled 1 at 90 GPa and 7000 K. The modified liquid to
liquid transition line is shown by the dotted line, which connects
the observed melting-curve maximum to the point 1. The ex-
perimental melting curve is extrapolated up to 110 GPa, the
transition pressures for the formation of the cg-N structure. The
solid molecular nitrogen to the solid polymeric nitrogen tran-
sition is denoted by the short-dashed line. The point labeled 2 is
the equilibrium pressure of the transition between molecular and
nonmolecular nitrogen [8]. The dashed line gives the probable
melting line for the polymeric nitrogen which passes through
2000 K, which is the melting temperature of nitrogen at
115 GPa, as observed by Eremets er al. [9].
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FIG. 1. Previously reported phase diagram of CdTe and the
experimental PT conditions in our EDX experiment. The phase
boundaries shown by solid bold lines are based on Refs. 28 and 41,
and 64, The pressure of the NaCl-orthorhombic Crem transition is
based on Ref. 29 and the slope is speculated from that in ZnTe (Ref.
65). The melting curve above 4 GPa is estimated from the results of
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the present study. The thin lines show the boundaries between liquid
forms estimated from the results of this study.
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FIG. 4. Average CN for [-CdTe at high pressures. Thin lines are
only to guide the eyes. The inset shows two methods used in the
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Fig. 1. Radiographs for phosphorus at various pressures and temperatures. Insets indicate x-ray
diffraction patterns measured at the positions indicated by the arrows. (A) Black P at 0.77 CPa and
765°C. (B) Low-density fluid phosphorus (LDFP) at 0.8 GPa and 1000°C. (C) A drop of high-density
liquid phosphorus (HDLF) in LDFP at 0.86 GPa and 995°C upon compressing. (D) The sample space
filled with HDLP at 1.01 GPa and 990°C. (E) A drop of HDLP in LDFP at 0.84 GPa and 993°C upon
decompressing. The x-ray aperture was restricted by the anvils. Sharp lines in the radiographs are
probably due to textures in the sample assembly.
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Fig. 2. Snapshots of drops of HDLP in LDFP during the transition. A sample container made of
pyrophillite was used. (A) There are a large drop and several small drops. (B) One of the small
drops grew into a large drop, and the two large drops are side by side. (€) The two drops coalesced

to form a larger drop.
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Fig. 3. X-ray absorption profile of liquid phos-
phorus in a sapphire ring at various pressures and
1000°C. The scan was along an axis parallel to
the ring as shown in the upper figure.
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A drop of HDLP sometimes rapidly moved
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the molecular howd model. The rapid coa-
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Liguid-Liquid Transition in the Molecular Liguid Triphenvl Phosphite

Hajime Tanaka. Rei1 Kurita, and Hiroshi Mataka
Institurte of Industrial Science, University of Tolyve, Meguro-fu, Tolkye 153-8505, Japan
(Recerved 8 April 2003; published 15 January 2004)

e found both nucleation-growth-tvpe and spinodal-decomposition-type transformation from one
ligpud state to another in a “molecular ligquid.” triphenv]l phosphite (TPP). Binodal and spinodal
temperatures of this transition at ambient pressure were determined by the characteristics of morpho-
logical evolution, domain-growth kinetics, and rheological evolution Furthermore, a distinct thermal
signature of the glass transition of a second liquid was also detected in addition to that of an ordinary
liquid. These findings strongly suggest the existence of a liguid-liquuid transition; more precisely. a
transformation of one supercooled liquad to a glassy state of another ligud, in TPPR

PHYSICAL REN

FIG. 1. Pattern evolution observed during the annealing of a
supercooled ligquad at T,. (al)—(a3) are observed with normal
microscopy at 7, — 220 K at the annealing tiime ¢, — 60. 120,
and 240 min. respectively. (bl)—b3) are observed with phase-
contrast microscopy for T, =213 K at ¢, — 120, 240, and
360 man, respectrvely. The white bar 1in (al) corresponds to
100 pem for (al)—(a3). while to 20 wm for (bl)—(b3). The
sample thickness was 100 wm for (a). while 20 gm for (b

VOLUME 92 NUMBER 2
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" HccnepoBaHUsA CTPYKTYPBI U CBOMICTB PacIlJlaBOB U
CTEKOJI 110/ IaBJIEHAEM I10KA3BIBAIOT BO3MOKHOCTD
CyILLIeCTBOBaHHS KaK Pe3KUX, TaK U PasMBITHIX

¢a30BBIX MPEeBpalleHH B HEYIOPSAA09eHHBIX
Cpefiax, COIIPOBOKIaeMbIX H3MeHeHHIMH BCex

GU3NYECKUX XaPaKTEePUCTHUK.
" «PegKoCThb» IIEPeX0a0B 1ro poga??

“ Peskue W pasMbIThHIC ITPEeBPAIIeHUs B
HeYyIIOpPAA04YeHHLIX CpelaXx HAXOAAT
OIIMCAaHHUe U 00bACHEHUE B PaMKaX IIPOCTHIX
MojeJiel. BMecTe C TeM aJleKBaTHOe
TeoOpeTHUYeCcKoe OUCcaHue IIpeBpalleHuH,
BKJIIOYas BBeleHUs aJiIeKBaTHOI'O
mapaMeTpa MOpPAAKa OCTAETCH IT0J,
BOIIPOCOM
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Structure and optical absorption spectra of

new AsS glass

Appl. Phys. Lett. 91, 031912 (2007)
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FIG. 2. (Color online) (a) Structure factor and (b) total correlation function
obtained by x-ray diffraction for As;S, glass (thick lines) and compared
with the data for the canonical As,S; glass from Ref. 21 (thin lines). The
insets show the initial parts of the corresponding curves. For the total cor-
relation function, the inset also illustrates two different contributions
(dashed lines) to the first coordination sphere of the AsyS, glass. The sample
of the glassy AsyS; was synthesized by quenching from the melt at P
=34 GPa and T=700 °C.
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20F © AsS, glass
® AsS glass after 10 min
intensive light illumination
o | As S, glass after
- photocrystallization
%\ % AsS, glassafter
thermal crystallization
p—_

10
0.5 |- oo &%
B
0.0 . i .
1.4 1.6 1.8 2.0
Energy (eV)
2
Urbach edge: o=o - cxp[(E-EK)JWuJ
ol Ws=120mev (b)

P
=
‘-5-’ 55 meV
k= W =155 me

2k

© AsS, glass
A As, S, glass
i z ® AsS_glass after 10 min
BM intensive light illumination
b ] il s 1 1 I 1
1.6 1.8 2.0 2.2 2.4

Energy (eV)

FIG. 3. (Color online) Plots of the optical inverse transmission spectra, for
the initial As,S, glass and for the partially crystallized (by 10 min light
illumination) sample in different coordinates for determination of the optical
pseudogap and the Urbach absorption tail energy. (a) (ad)'? vs E plot shows
the inverse transmission data for the crystalline AsySy, obtained by thermal
crystallization at 200 °C and by photocrystallization. For the latter, the time
of illumination exceeds the time during which we observe the saturation of
the photostructural changes in the inverse transmission spectra of the initial
glass (—~1 h). (b) In{ad) vs E plot shows the spectra for two independent
AsyS, glass samples prepared at the same pressure-temperature conditions
(close to those in Fig. 2). The thickness of the samples d was estimated to be
Il pem.
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