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С 2000 года нами опубликовано: 
2 монографии и 1 вузовский учебник (по математике) 

и 
23 статьи в математических журналах 

(Успехи мат. наук, Труды института им. Стеклова, 
Мат. Заметки и т.д.) 

А также – опубликовано 36 статей в биологических и 
информатических журналах (Молекулярная 
биология, Биофизика, Биохимия, FEMC, ВМС, JBCB, 
inSB, ...)

Подготовлено 2 докторские и 3 кандидатские 
диссертации (все – физ.-мат. науки, «теоретические 
основы информатики», «биоинформатика»)



Ежегодно наши аспиранты и сотрудники делают 
доклады примерно на 4-х международных 
конференциях (математических, биологических, 
информатических)

За это время аспиранты и сотрудники приняли 
участие в выполнении: 25 грантов, 2 целевых 
грантов, 2 научных программ и 2 совместных тем по 
линии РАН-СНРС. 

Лауреаты премии 

«За лучшую публикацию в журнале Молекулярная 
биология» за 2005 год и премий некоторых 
зарубежных университетов



Тесно сотрудничаем с кафедрой 
«математической логики и теории 
алгоритмов» мех-мата МГУ, в частности, 
читаем там курс «Модели и алгоритмы в 
биоинформатике». Сотрудничаем с 
факультетом биоинформатики и 
биоинженерии МГУ, с факультетом ВМК.
 
Регулярно ведем курсовые и дипломные 
работы, аспирантов. Сотрудничаем с 
аспирантурой Париж-7. 
Включая оплачиваемую работу.



1)   Проблемы эффективности; 

2)   Модели и алгоритмы основных 
молекулярных процессов в клетке: геномы 
бактерий, растений, водорослей и простейших 
.....

ДНК=геном – последовательность в 4х-буквенном 
алфавите {A,C,T,G} 

с характерной длиной 3 миллиона – 6 миллиардов 
позиций. Каждая буква называется «нуклеотид».



Модели и алгоритмы 
(компьютерный счет)

Данные Результат 



ген 1 ген 2 ген 3

инструкция для 
химической реакции – 
создается фермент; 
или для создания 
другой молекулы: 
белка или РНК

сигнал 2 сигнал 3

лидерная
область 2

лидерная 
область 3

Ген считывается по сигналу из лидерной области! 
Ген и сигнал эволюционируют!

инструкция для 
химической 
реакции 2

инструкция для 
химической 
реакции 3



Один из возможных типов сигналов (= 
регуляций): 

сайт посадки

репрессор/активатор



Даны n последовательностей. Задача: найти систему сай-
тов (=сигнал,мотив) s = {s1,...,sk}, состоящую из сайтов s1,...,sk, 
где k  n. Все сайты имеют одинаковую длину. Определяем 
качество системы как сумму попарных близостей сайтов, 
составляющих систему (=качество сигнала).

Leader region 1

Leader region n



Ищем систему сайтов с максимальным 
значением  качества, т.е. ищем минимум 

целевого функционала  F  в 
пространстве всех возможных систем:

1
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( { ,..., }) ( , )
k

k i j
i j

F s s s s s
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Идея нашего алгоритма. Делим все последовательности на две 
примерно равные части и лучшую систему в одной части 
объединяем с лучшей системой в другой части. Пусть 1() – 
лучшая система в одной части как функция от  (и фиксирована 
последовательность *), а 2() – аналогичная система в другой части 
как функция от  . 

Индуктивный шаг: 

от 1(•) и 2(•) 

переходим к (•) по 

правилу:  лучшая 

система 1()+2(), 

полученная пере-

бором всех  и  в 

*последователь-

ностях
Lead. reg. n

Lead. reg. 1



Пример. Даны n=14 последовательностей, каждая с 
длиной m=201; ищем систему сайтов с длиной 15 



Работа алгоритма: 



Результат работы алгоритма: 



Качество потенциального сигнала растет в процессе 
счета:

Q
u

a
li

ty
 

Iteration



Последовательное изменение качества сигнала в 
ходе алгоритма:

Q
u

a
li

ty
 

Iteration



Параллельная реализация вычислительно трудоемких алгоритмов: 
поиск мультибоксового регуляторного сигнала в группе геномов

«Однобоксовый» сигнал:
- полный перебор O(mn)
- наш алгоритм O(n2m3)

«Двухбоксовый» сигнал:
- полный перебор O(mndn)
- наш алгоритм O(n2m3d3)

(n – число последовательностей,
 m – максимальная длина,
 d – интервал расстояний между  
 боксами сигнала)

Волновая вычислительная схема на двумерной ε-сети перестановок 
мощностью порядка n2 (в полном пространстве n! перестановок):

1) отсутствует жёсткая привязка к числу процессоров кластера
2) линейный рост производительности от числа доступных процессоров в 

широком диапазоне (проверено на МВС-1000М МСЦ, до 512 CPU)

Пример для 
n=45, m=201,
8 CPU



Wavelike computation scheme
Using 2D queue of permutations (P,Q) instead of straight one
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Параллельная реализация вычислительно трудоемких алгоритмов: 
реконструкция эволюции регуляторного сигнала в группе геномов

Усовершенствованная параллельная схема аннилинга MC3 

(= Metropolis-Coupled Markov Chain Monte-Carlo):
1) лучшее покрытие множества минимальных конфигураций 
2) меньшая зависимость от выбранной начальной точки
3) более быстрая сходимость к одному из предполагаемых абсолютных 

минимумов функционала «энергии»

Индивидуальные режимы охлаждения
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Периодический обмен параметрами 
охлаждения между находящимися в 
окрестности различных локальных 
или условных минимумов цепями с 
разной температурой способствует 
выходу из оврагов и локальных 
минимумов поверхности отклика. 
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Показана лидерная область перед геном, 
в ней «окно» с концами x и y, 

а в окне образуются «спирали»

ген

левое
плечо

правое
плечо

x y



«Спираль» с «плечами», 
склеиваются G с C и A с T:



Реальные еще очень простые 
вторичные структуры (=наборы спиралей): 



T

A

лидерная область

Два состояния сигнала. Результат определяется тем, какая 
из двух альтернативных вторичных структур образуется: «Т» 
или «А»



Результат одной нашей моделей регуляции:

Vibrio cholerae trp
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Примеры результатов счета в этой модели
Мы считали функцию p=p(c) для практически всех лидерных областей 
аминокислотных оперонов и аминоацил-тРНК синтетаз. Имеется высокое 
согласие с экспериментом, с одной стороны, и предсказание многих 
новых случаев такой регуляции, с другой стороны. Здесь показаны thrA 
опероны у гамма-протеобактерий. 



Два основных направления 
нашей работы в Биоинформатике:

1) Модели и алгоритмы регуляции генов,

2) Модели и алгоритмы эволюции этих 
регуляций (=сигналов)



Дано дерево G , у которого длины ребер соответ-
ствуют времени переходу от предка к потомку. 
Даны современные последовательности

Ищем все предковые 
последовательности 

1 2 3 4 = m

..ACTG..

G



Иногда ищется и само дерево     : тогда 
даны только современные последователь-
ности. 

Эти заданные последовательности –

организмы, виды, гены, белки, сигналы

                                  

G



Классическая аттенюаторная регуляция биосинтеза 
треонина у гамма-протеобактерий

VC = Vibrio cholerae, VV = Vibrio vulnificus, VP = Vibrio parahaemolyticus,
AB = Actinobacillus actinomycetemcomitans, HI = Haemophylus influenzae,
PQ = Mannheimia haemolytica, VK = Pasterella multocida, YP = Yersinia pestis,
EO = Erwinia carotovora, TY = Salmonella typhi , XCA = Xanthomonas campestris, 
EC = Escherichia coli, KP = Klebsiella pneumoniae, SON = Shewanella oneidensis

?конфигурация σ



Наша модель эволюции сигнала:

Такая функция минимизируется с помощью 
алгоритма аннилинга. На каждом его шаге текущая 
конфигурация       заменяется на новую       из 
определенного списка возможностей с вероятностью

или остается прежней с вероятностью               .

Нами доказана сходимость к глобальному min при 
условии
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σj

σ'j

Показано одно ребро от некоторой конфигурации σ. На 
этом ребре за время tj  происходят: замены букв со 

скоростями R, вставки букв и делеции букв. 

tj

Сначала выравниваем позиции у σj  
и σ'j, при этом возникают пустые 
позиции. Длины участков с пустыми 
позициями обозначим ljm. Тогда:
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Слагаемое H1(σ) в функции H

j-е ребро



hj

h'j

Показано одно ребро от конфигурации σ. На этом ребре 
произошел переход от вторичной структуры hj в σj  к 
вторичной структуре h'j в σ'j. 

Тогда:

 2 ( ) ,j j
j

H h h  

Слагаемое H2(σ) в функции H

j-е ребро

σj

σ'j



Решение (фрагмент): эволюция предкового сигнала



Поиск и эволюция сигнала другого типа 
(«промотора»): некоторой комбинации 

слов 
с условиями на них и расстояния

TTGaca             ...17-18н...            TAtaaT            стр. ген



На следующем слайде показан 
удивительно консервативный (=устойчивый 
при эволюции) прмотор (перед геном psbA 

в пластидах)

На слайде через один показан противопо-
ложный случай: быстро эволюционирующий 
(меняющийся) промотор среди цветковых 
растений (перед геном ndhF в пластидах). Он 
имеет четыре варианта A, B, C, D, сменяю-
щие друг друга. Сами эти промоторы найде-
ны, но здесь не приведены.



TTGACATGGCT=ATATAAGTCATGTTATACT  Arabidop 
TTGACACGGG=CATATAAGGCATGTTATACT...ASpinacia 
TTCACGATA==TATATAAGTCATACTATACT  Cycas 
TTGACATACA=GATATGTCTCATATTATACT  Cryptomer 
TTGACATTGAT=ACATGGATCATATTATACT  Pinus 
TTGACTTTAAT=AAACCATTTCTGTTATACT  Welwitsch 
TTGACACGGAT=AGGTTTTT=GTGATATGCT  Adiantum 
TTGACATCAAT=AGATAAGTTGTGTTATACT  Angiopter 
TTGACATATAT=GGAAAGATCATGTTATACT  Psilotum 
TTGACACAAA=AAGAAAGATTGTGTAATATT  Huperzia 
TTGACATAC=TAATGGGATATGTGTAATAAT  Aneura 
TTGACATAA=TCATATGTTATGTGTAATACT Marchantia 
TTGACATAA=TAATACATTTTGTGTAATACT Physcomitr 
TTGACATTT=TTATACTTTACATACTATAAT  Chara 
TTGACATTAGTTATACGT=TTGTGCAATACT Chaetospha 
TTGACAGCT=TAAGGTTAAT=ATGTAATAAT  Staurastr 
TTGACAACAG=CATTAACTATCTGTAATAAT  Zygnema 
TTGACAAATA=AACATCATTT=TGGCATAAT  Mesostig 
TTGATTAATATAA=ATTAATTA=GTTATAAT Bigelowiel 



Magnoliophyta A

eudicotyledons Amagnoliids A

core A stem A

Asterids A Vitales A,C Caryoph A rosids B Ranun A Proteales A,C

Campanul A lamiids A eurosids1 Myrtales B,C eurosids2 Geraniales B

Cucurbitales B

Malpighiales D

Rosales B

Fabales B

Sapindales B,C

Malvales B,C

Brassicales C



Пример интересной темы для исследования – связь 
(РЕР) промоторов и предпочитаемых ими сигма-
субъединиц. 

Например, нами показано, что промотор С 
предпочтительно связывает Sig4-субъединицу РНК-
полимеразы. Аналогично для фаговых промоторов и 
полимераз.



Переходы, возможные в нашей модели 
регуляции, которая связана со спиралями: 

(1) Правый конец y окна сдвигается на один 
нуклеотид вправо или остается на месте или подается 
сигнал «Т». Альтернатива: когда правый конец y доходит 
до начала гена, то подается сигнал «А». 
При этом вторичная структура в окне формирует выбор 
между Т или А;

(2) Левый конец x окна сдвигается на три нуклеотида 
вправо или остается на месте, что зависит от частоты c 
предшествующего считывания регулируемого гена;

(3) Вторичная структура преобразуется в окне, т.e. 
текущая вторичная структура ω трансформируется в 
новую структуру ω'.



В модели с предыдущего слайда ищется (выход алгоритма)

зависимость p(c) – частота наступления состояния «Т» 

(несчитывания гена), 

при каждом фиксированном значении 

частоты считывания («концентрации») c.

При наличии такой регуляции график p(c) имеет вид, 
показанный на слайдах 24 и 25. При ее отсутствии график 

p(c) имеет вид почти постоянной функции или даже 
убывающей функции.



Что можно читать по этим темам:

1а) тип сигнала – «вторичная структура»:
[Lyubetsky, Pirogov, Rubanov, Seliverstov, 2007, Journal of 
Bioinformatics and Computational Biology, vol 5, no 1, p. 
155-180],
1b) тип сигнала – «промотор»:
[Селиверстов, Лысенко, Любецкий, 2009, Физиология 
растений РАН, том 56, № 5; Seliverstov, Lyubetsky 
Молекулярная биология, представлена]

2) Модели эволюции этих регуляций, т.е.  
эволюции сигналов 1а и 1b:
[Любецкий, Жижина, Рубанов, 2008, Гиббсовский подход в 
задаче эволюции регуляторного сигнала экспрессии гена, 
ППИ, №4; Горбунов, Любецкий МолБио, представлена]

Статьи можно получить от авторов по адресу: gorbunov@iitp.ru



Наши биологические результаты (дает 
некоторый обзор, для слушателей не обязателен)

1. Проведена реконструкция эволюционных событий 
молекулярного уровня:

построены деревья белков и согласующие их 
деревья видов, найдены события потенциальных 
горизонтальных переносов, потерь и дупликаций 
генов, случаи массовой дупликации генов в 
предковом геноме, статистические характеристики 
эволюционных событий по вершинам дерева видов и 
по таксономическим группам, сравнивались 
сценарии горизонтальных переносов против 
дупликаций и потерь генов. [In the book: Bioinformatics 
of Genome Regulation and Structure II. Springer 
Science & Business Media, Inc. 2005]



2. Предложены новые типы регуляции 
экспрессии генов:

        2.1 Регуляция на уровне трансляции, опосредован-
ная Т-боксом, например, гена ileS, кодирующего 
изолейцил-тРНК синтетазу, у Актинобактерий. [BMC 
Microbiology, 2005, 5:54; Молекулярная биология, 2005, 
39(6)]
 
        2.2  Регуляция на уровне трансляции посредством 
взаимодействия рибосомы, транслирующей лидерный 
пептид, и вторичной структуры РНК для гена leuA, 
кодирующего 2-изопропилмалатсинтазу, у 
Актинобактерий («LEU-элемент»). [BMC Microbiology, 
2005, 5:54; Молекулярная биология, 2005, 39(6)]



2.3 Сложные типы классической аттенюаторной 
регуляции (когда антитерминатор не альтернативен 
терминатору), например, у лактобацилл перед геном ilvD: 
это – цепь спиралей или псевдоузел. [готовится к печати]

2.4 Аттенюаторная регуляция генов cysK синтеза 
цистеина у Актинобактерий, вовлекающая ро-белок для 
терминации транскрипции: рибосома, транслирующая 
лидерный пептид, перекрывает сайт связывания ро-
белка. [BMC Microbiology, 2005, 5:54]

2.5 Регуляция гена leuA у альфа-протеобактерий, 
вовлекающая ген лидерного пептида и консервативный 
псевдоузел («LEU1-регуляция»). [готовится к печати]



2.6 Регуляция, опосредованная аномально длинной спиралью 
РНК, генов, кодирующих транспортёры двухвалентных 
катионов (mntH) и ферменты, зависимые от металлов 
(никель-зависимая глиоксалаза и др.), у бруцелл. 
Выясняется роль этой регуляции в выживании бруцеллы при 
незавершённом фагоцитозе (бруцеллез). [Биофизика, в 
печати]

2.7 Статистические данные о расположении длинных 
спиралей в геномах Актинобактерий относительно 
кодирующих областей: длинные спирали концентрируются в 
некодирующих областях вблизи 3'-концов высоко 
экспрессируемых генов (включая тРНК) или между 
сходящимися навстречу друг другу генами. Выясняется роль 
таких шпилек в снятии конформационного напряжения ДНК и 
при терминации транскрипции путем образования крест-
шпилек на ДНК. [МолБиол, 2007, 41(4)]



3. Найдены новые случаи известных типов 
регуляции у бактерий: 

3.1 Предсказана белок-ДНКовая регуляция на уровне 
транскрипции и также промоторы генов синтеза пролина 
у протеобактерий родов Pseudomonas и Shewanella. 
[Молекулярная биология, 2007, 41(3)]

3.2 Предсказано много случаев белок-ДНКовой 
репрессии/активации. В частности, охарактеризован 
GlpR-регулон (регуляция метаболизма глицерол-3-
фосфата). [Молекулярная биология, 2003, 37(5) – 
совместно с М.С. и его сотрудниками].



3.3 Проведен широкомасштабный поиск регуляции на 
уровне транскрипции посредством Т-боксов. 
[Молекулярная биология, 2005, 39(6)]

3.4 Предсказана классическая аттенюаторная регуляция: 
(a) у протеобактерий (включая дельта-протеобактерии) и 
у видов из таксономических групп бацилл/клостридий и 
бактероидов [FEMS 2004], (b) у Актинобактерий [BMC 
Microbiology, 2005, 5:54]



3.5 Предсказана регуляция на уровне трансляции 
посредством тиаминового рибопереключателя для гена 
ykoE, кодирующего субъединицу ABC транспортёра: 
происходит перекрывание сайта связывания рибосомы 
иногда прямо черенком рибопереключателя, а иногда 
дополнительной спиралью РНК – 

происходит быстрая смена этих механизмов регуляции у 
очень близких видов (показана эволюция этого 
механизма). [Информационные процессы, 2006, 6 (1)]



4. Белок-РНКовая регуляция в пластидах: 

4.1 Корреляция сплайсинга с белок-РНКовой регуляцией 
трансляции в хлоропластах растений и водорослей. 
[Journal of Bioinformatics and Computational Biology, 2006, 
4, 4, 783; Биофизика, 2006, 51, тематический выпуск 1]

4.2 Связь вторичной структуры РНК с редактированием  
инициирующего кодона в хлоропластах у мхов и 
папоротников. [Биофизика, 2006, 51, тематический 
выпуск 1]

4.3 Найдена высоко консервативная регуляция 
экспрессии генов psaA, psbA и psbB (вне связи со 
сплайсингом) [Journal of Bioinformatics and Computational 
Biology, 2006, 4(4)].



4.4 Найдена ортологичная консервативная регуляция 
гена ycf24 на уровне трансляции в пластидах красных 
водорослей и паразитов из таксона Apicomplexa (Eimeria 
tenella, Plasmodium spp., Toxoplasma gondii). Более того, 
у T. gondii эта регуляция охватывает и много других 
генов, включая те, которые кодируют РНК-полимеразу: 

этот ген кодирует белок SufB, необходимый для 
формирования железосероцентров. 
Выясняется роль пластид в жизни токсоплазм на 
молекулярном уровне. [Мол. биология, в печати]



5. Промоторы бактериального типа в пластидах и 
соответствующие им сигма-факторы 

у растений и водорослей:
5.1 Изучена быстрая эволюция промоторов перед геном ndhF, 
чья транскрипция у Резушки Таля (Arabidopsis thaliana) 
существенно зависит от сигма-субъединицы Sig4. 
[Физиология растений, в печати].

5.2 Предсказано, что кодируемая в ядре сигма-субъединица 
Sig4 РНК-полимеразы бактериального типа существовала уже 
у предка высших двудольных растений и у него же имелся 
Sig4-зависимый промотор: 

соответствующие кДНК sig4 найдены по базе EST у винограда 
Vitis vinifera и двух видов апельсина Citrus clementina и C. 
sinensis (у апельсинов это псевдоген). Также известен 
псевдоген sig4 у тополя Populus trichocarpa. А Sig4-зависимые 
промоторы предсказаны в хлоропластах у всех видов из 
таксона Eurosids II (включая крестоцветные, апельсин и 
хлопок), а также у нескольких далёких представителей 
двудольных: эвкалипта, винограда и платана.



5.3 Исследованы Sig3-зависимые промоторы перед 
геном psbN у семенных растений и показано общее! для 
всех однодольных растений значительное отличие 
области этого промотора от прочих цветковых растений.



5.4 Найдены высоко консервативные хлоропластные 
промоторы бактериального типа перед генами rbcL, 
psaA, psbA, psbB, psbE у большинства видов из 
Streptophyta. 

Более того, промотор перед геном psbA, кодирующим 
белок D1 второй фотосистемы, одинаков у Streptophyta, 
включая рано отделившиеся роды Mesostigma и 
Chlorocybus, и у вторичного симбионта Bigelowiella natans 
из таксона Cercozoa.



5.5 Найдены промоторы перед геном rps20 и 
близлежащие сайты связывания транскрипционного 
фактора (– ортолога NtcA) в хлоропластах красных и 
криптофитовых водорослей. При этом сайт для NtcA 
найден тогда и только тогда, когда дивиргентно 
располагается ген glnB. У цианобактерий оба белка NtcA 
и GlnB вовлечены в регуляцию генов метаболизма азота 
и их взаимная регуляция показана (в частности, NtcA 
активирует транскрипцию glnB). 

На этом основании предсказана регуляция в 
хлоропластах по механизму конкуренции РНК-
полимераз, транскрибирующих гены на 
противоположных цепях ДНК, причем также происходит 
активация транскрипции glnB.



6. Найдена общая белок-ДНКовая регуляция 
экспрессии ядерных генов, кодирующих 

рубредоксин и киназу, 
фосфорилирующую белки по тирозину,

 
у диатомовой водоросли 

Thalassiosira pseudonana и 
у паразитов родов Theileria и Babesia 



Эти виды являются вторичными симбионтами и имеют 
пластиды с общим происхождением от красных 
водорослей. Однако их ядерные геномы сильно 
отличаются. Поэтому можно предполагать связь этой 
регуляции с пластидами. Интересно, что киназы обычно 
участвуют в регуляторных каскадах, передающих сигнал 
от некоторой мембраны, в частности, от пластиды.

Пластиды у диатомовых водорослей и паразитов 
Apicomplexa похожи, а ядерные геномы значительно 
различаются. С другой стороны, у криптофитовых 
водорослей рубредоксин кодируется в нуклеоморфе, т.е. 
непосредственно связан с пластидами. Поэтому можно 
предположить, что эти очень близкие регуляторные 
механизмы связаны с появлением пластид. 
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