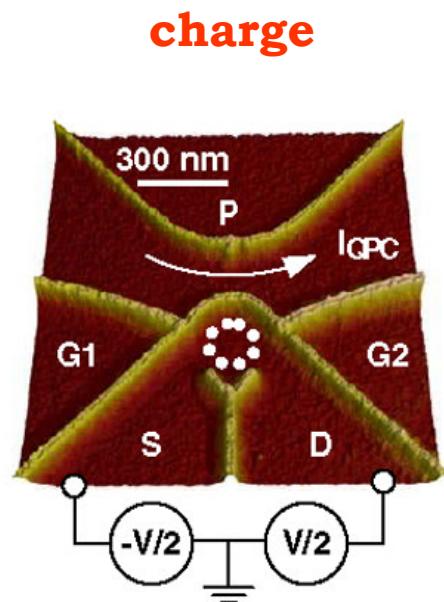
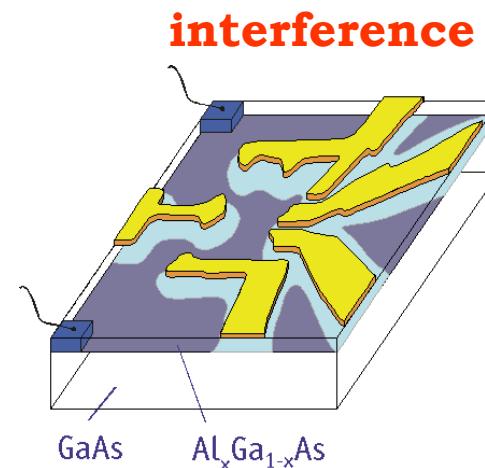
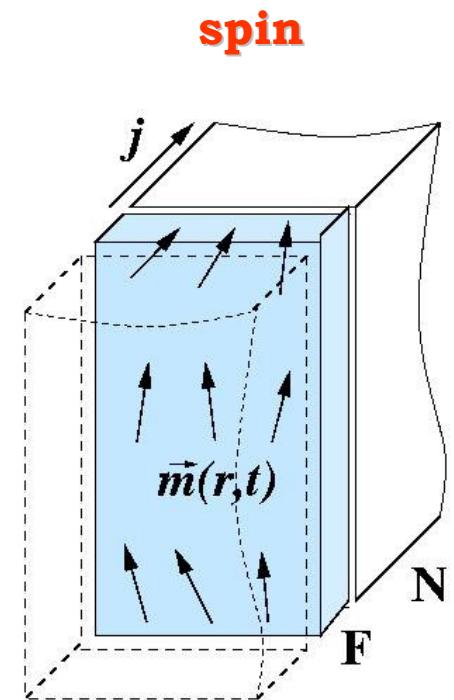


Electron nano-transport: why is it interesting?

Mikhail Polianski
NBI, Denmark



11 March, 2009

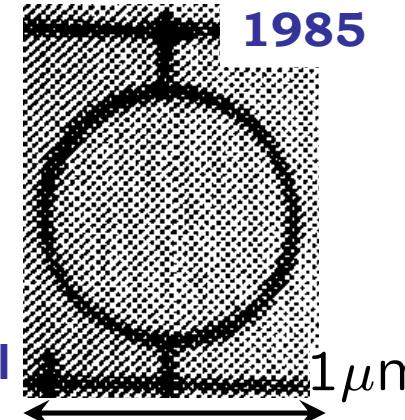
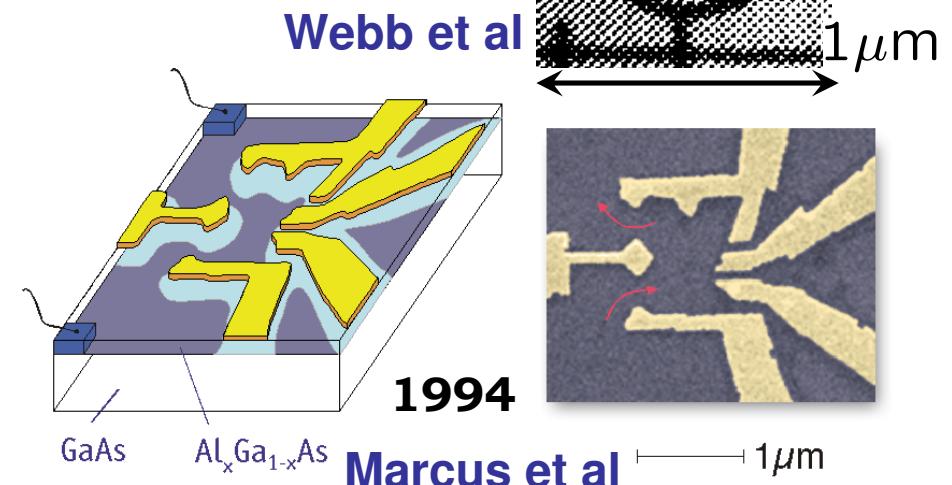
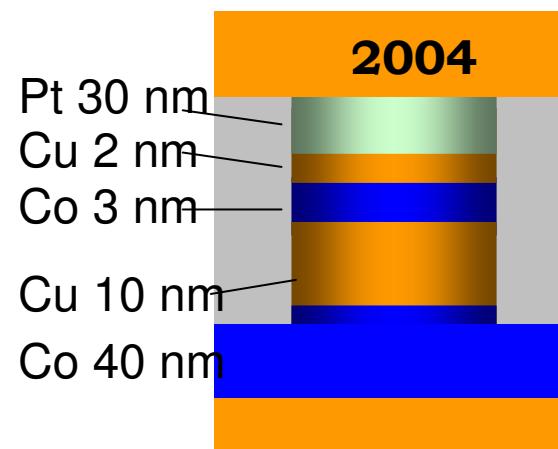
Outline

- Introduction. What is big/small?
What is “mesoscopic”?

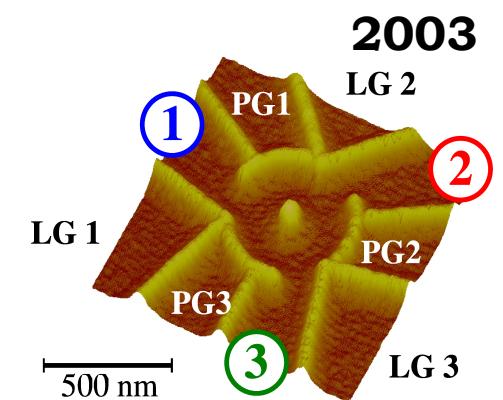
- Classical vs quantum
- 2 kinds of fluctuations
- AC transport

- Spintronics:
who needs it?

- Conclusions



Kiselev et al



Leturcq et al

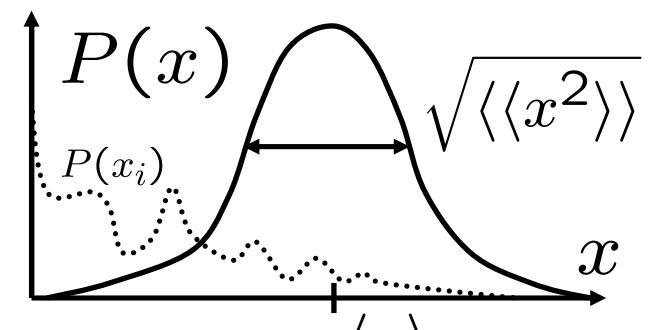
What do we need to know?

- Sum of many uncorrelated quantities with some unknown distributions is Gaussian (CLT)

$$P(x) \propto \exp \left(-\frac{(x - \langle x \rangle)^2}{2 \langle \langle x^2 \rangle \rangle} \right)$$

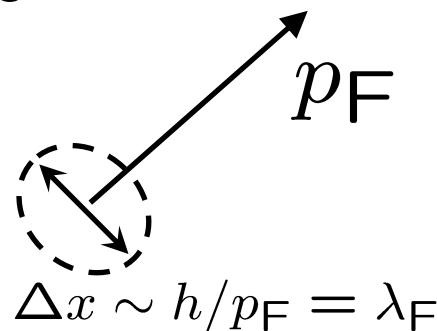
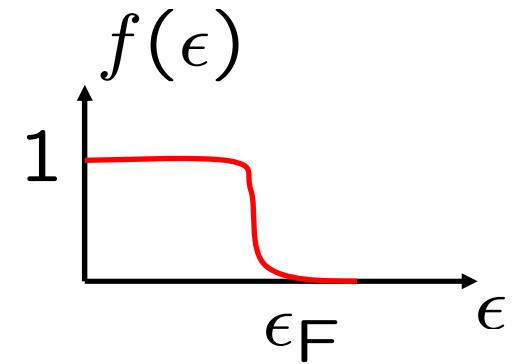
$$\langle x^2 \rangle = \langle x \rangle^2 + \langle \langle x^2 \rangle \rangle$$

$$x = x_1 + x_2 + \dots + x_N$$



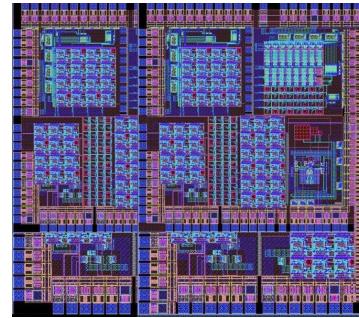
- Fermi distribution (Pauli principle)
- Uncertainty relation

$$\Delta x \cdot \Delta p > \hbar \neq 0$$



Motivation

Faster operation
stable read/write
low heating
small size.



Currently: $L \sim 10 \text{ nm}$
Mean free path $l \sim 100 \mu\text{m}$

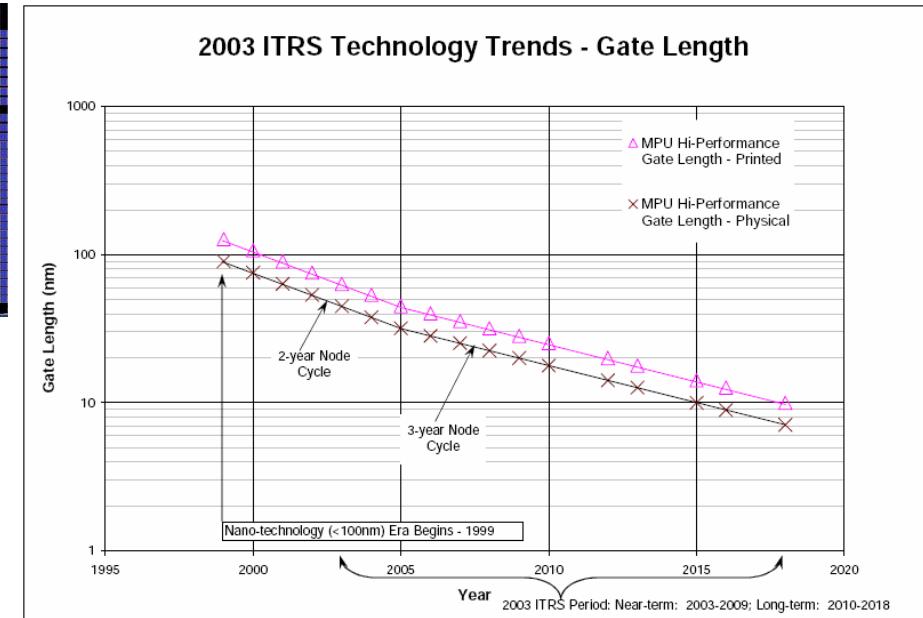
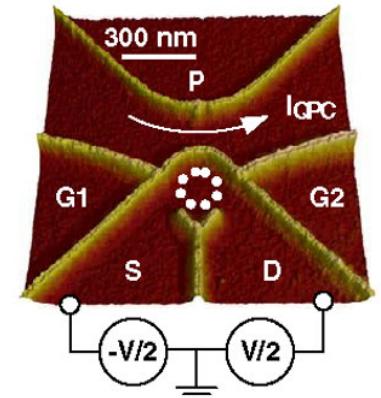


Figure 8 2003 ITRS—Gate Length Trends

Reproducible (industry and science)

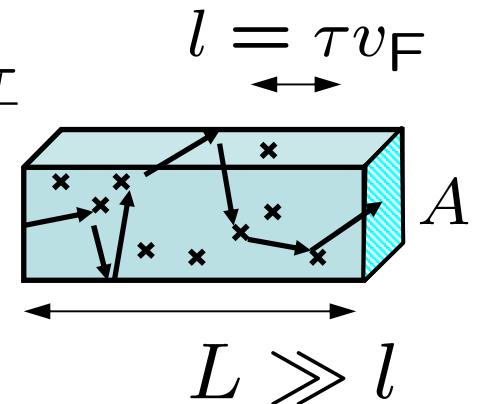
1. What IS small? 10 nm— is it small already?
2. Can we predict properties of small samples?
Unpredictable: is it good or bad?



“Big” is classical physics scale

- Ohm's law

$$G = \frac{I}{V} = \sigma \frac{A}{L}, \sigma \sim \frac{nev}{E} \sim ne \frac{Ee\tau/m}{E} \sim \frac{ne^2\tau}{m}$$

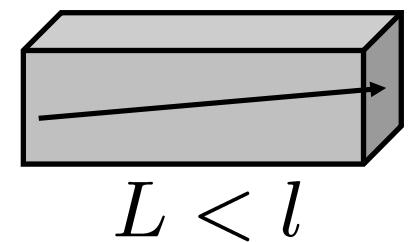


- Conductivity is material property, does not fluctuate
- $\hbar = 0$
Electrons are point-like particles

This reproducibility fails when $L < l \sim 100\text{nm}$?
In other words, diffusive (dirty) \rightarrow ballistic (clean)

Not conductivity σ , but sample's conductance

$$G = \frac{I}{V}$$



Not so simple: local vs non-local

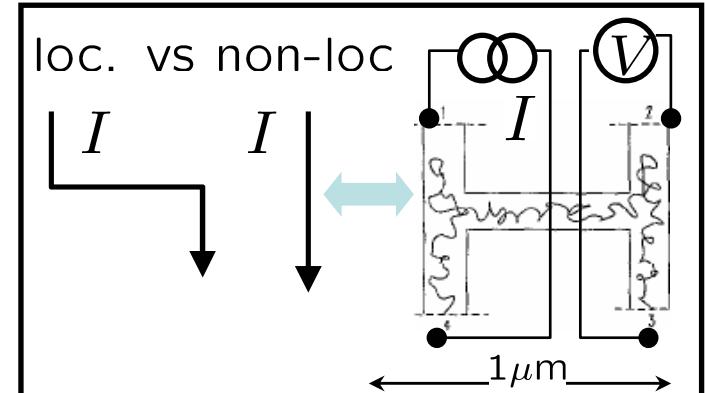
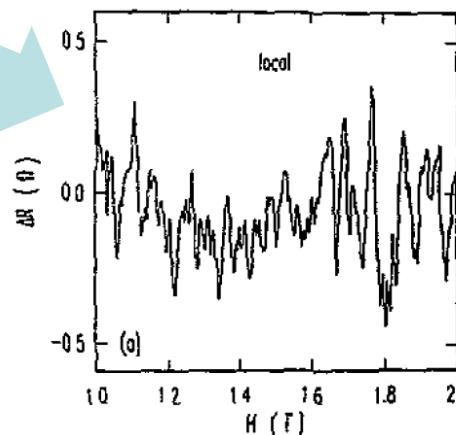
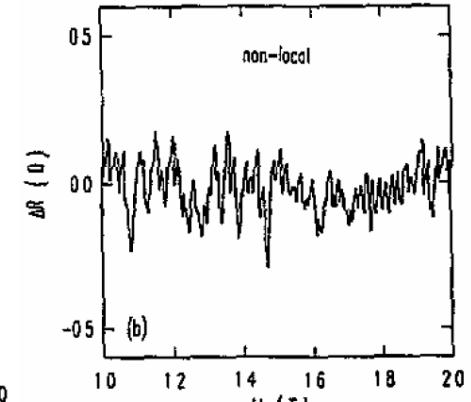
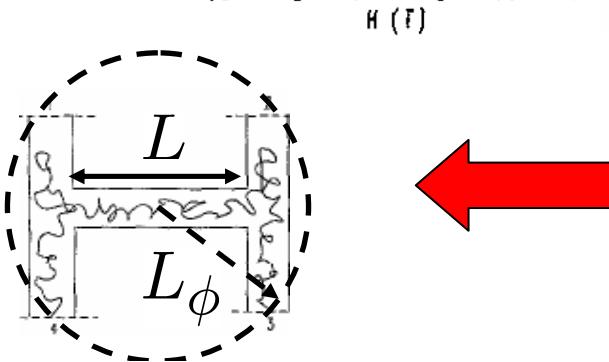
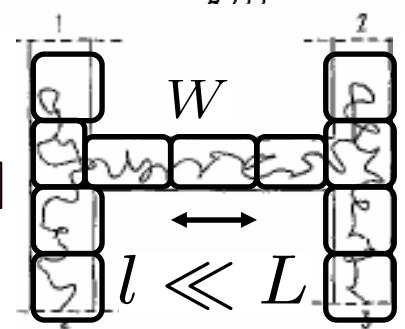
Classically, non-local response is suppressed, so are fluctuations $\propto \exp(-L/W)$, $l \ll W \ll L$

But fluctuations are similar for local and non-local
Length l did not matter?

Haucke'90

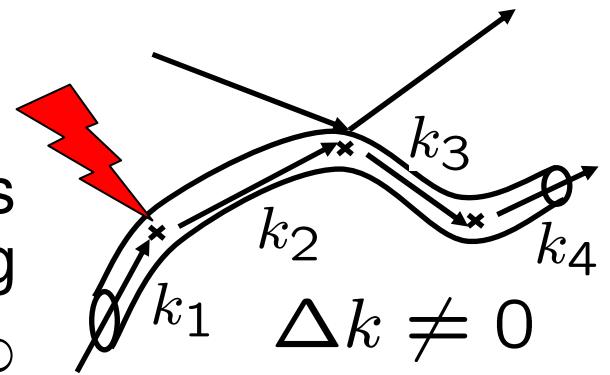
Introduce a new scale L_ϕ

When $l \ll L < L_\phi$, our classical intuition is wrong



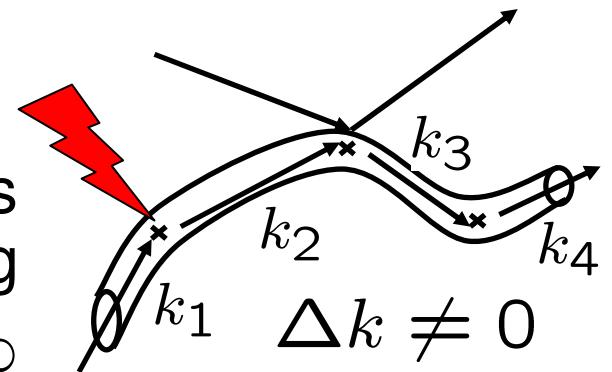
Quantum on larger scale

- Electrons gain phase,
$$\boxed{\phi = \int \vec{k} d\vec{r}}$$
- On dephasing length L_ϕ electron loses phase memory due to inelastic scattering $L_\phi(T) \propto T^{-p}; T \rightarrow 0 \Rightarrow L_\phi \rightarrow \infty$

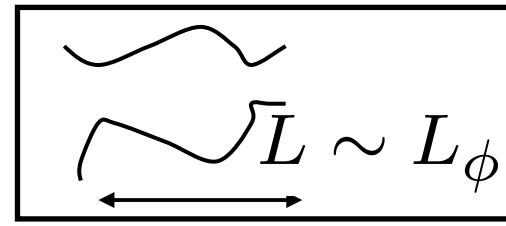


Quantum on larger scale

- Electrons gain phase,
$$\phi = \int \vec{k} d\vec{r}$$
- On dephasing length L_ϕ electron loses phase memory due to inelastic scattering
$$L_\phi(T) \propto T^{-p}; T \rightarrow 0 \Rightarrow L_\phi \rightarrow \infty$$



Mesoscopic $L < L_\phi \rightarrow$ strong fluctuations



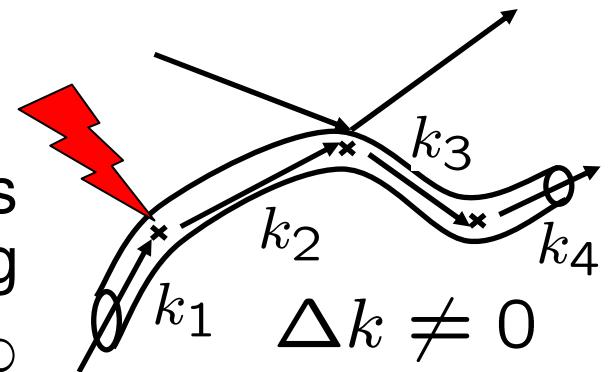
“random error”
 $g \pm \delta g$

$$r = \frac{1}{g}, \delta r \sim \frac{\delta g}{g^2}$$

Quantum on larger scale

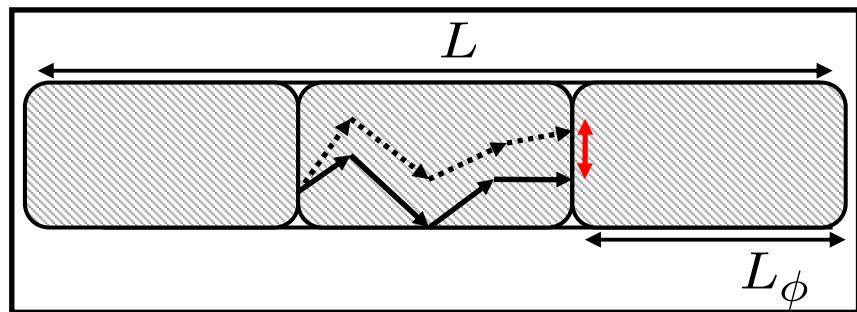
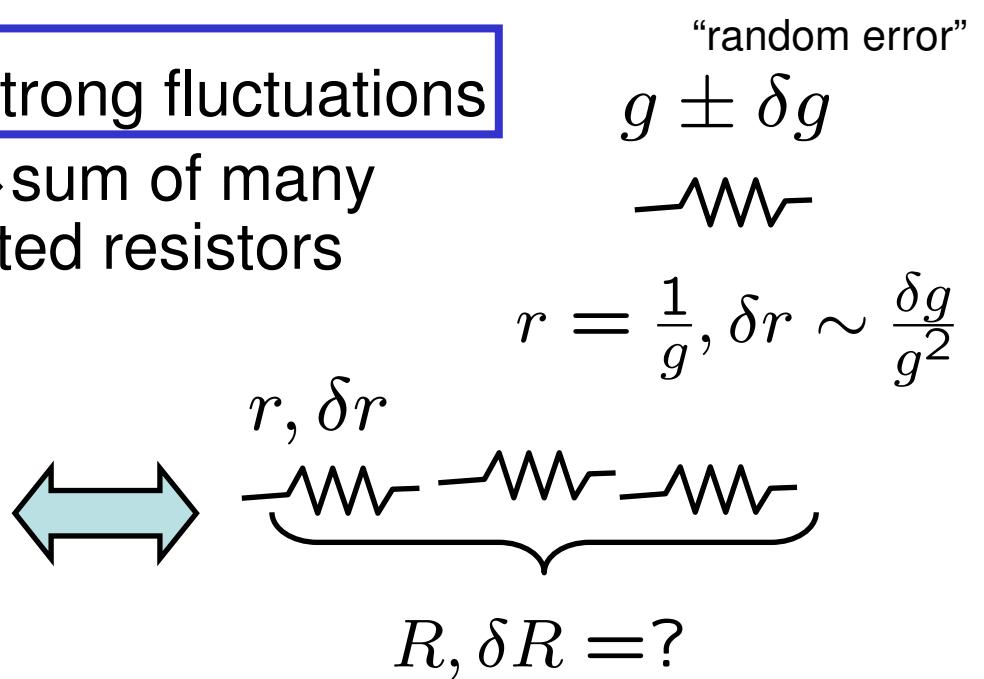
- Electrons gain phase,
$$\phi = \int \vec{k} d\vec{r}$$
- On dephasing length L_ϕ electron loses phase memory due to inelastic scattering

$$L_\phi(T) \propto T^{-p}; T \rightarrow 0 \Rightarrow L_\phi \rightarrow \infty$$



Mesoscopic $L < L_\phi \rightarrow$ strong fluctuations

Macroscopic $L \gg L_\phi \rightarrow$ sum of many
 $N \sim L/L_\phi \gg 1$ uncorrelated resistors

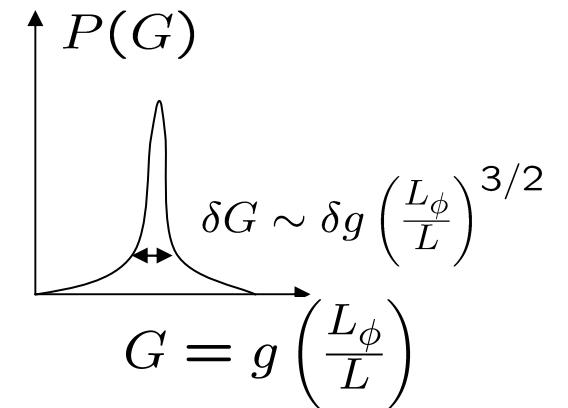


Mesoscopic scale

In classical limit, sum of “random errors” grows slower then average

$$R \propto rN, \delta R \sim \sqrt{\sum_i (\delta r_i)^2} \propto \delta r \sqrt{N}$$

$$\frac{\delta G}{G} \sim \frac{\delta g}{g} \sqrt{\frac{1}{N}} \ll \frac{\delta g}{g}$$



Mesoscopic scale

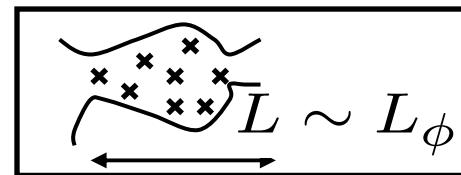
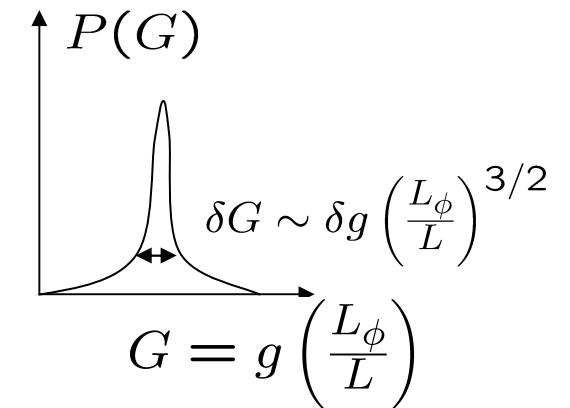
In classical limit, sum of “random errors” grows slower than average

$$R \propto rN, \delta R \sim \sqrt{\sum_i (\delta r_i)^2} \propto \delta r \sqrt{N}$$

$$\frac{\delta G}{G} \sim \frac{\delta g}{g} \sqrt{\frac{1}{N}} \ll \frac{\delta g}{g}$$

Mesoscopic fluctuations

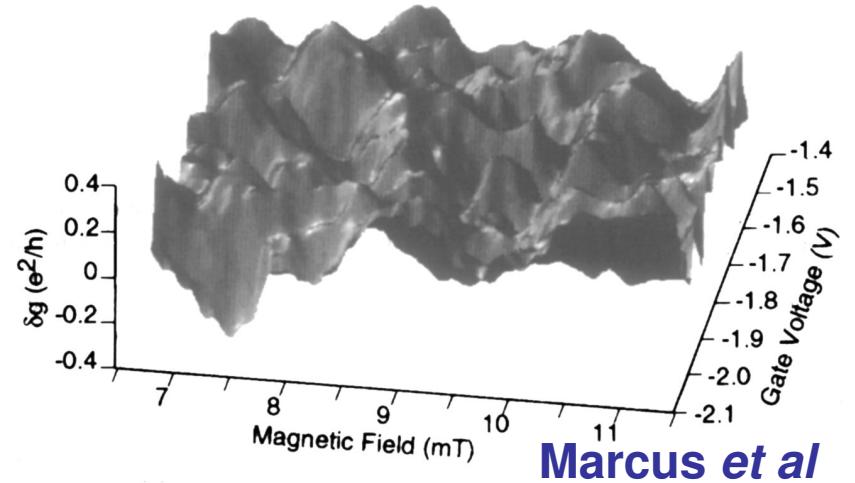
universal (UCF) $\delta g \sim e^2/h$



Fluctuations probe interference

$$T \sim 4K \Rightarrow L_\phi \sim 1\mu\text{m}$$

Take $T \rightarrow 0$ and see quantum effects



Not always point-like particles

$$G_{AB} \propto \frac{e^2}{h} \left| \sum_{i=1}^N A_i e^{i\phi_i} \right|^2$$

- Classical + interference contributions

$$G \propto \sum_i A_i^2 + 2 \sum_{i < j} A_i A_j \cos(\phi_i - \phi_j)$$

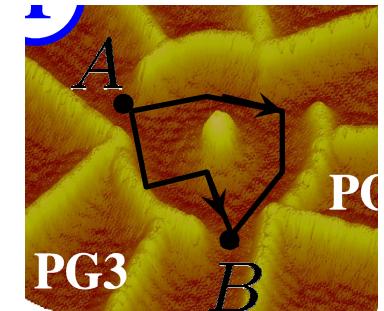
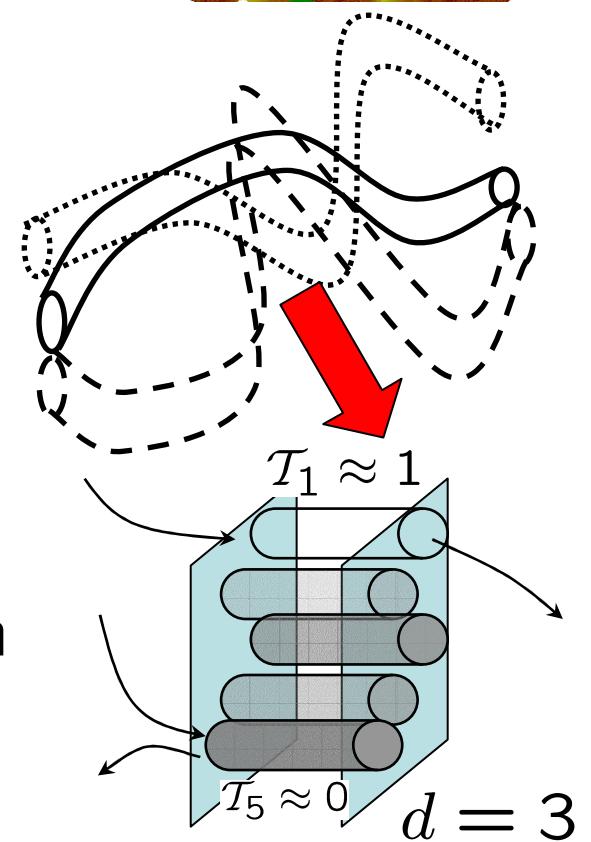
- Independent e -tubes $\sim \lambda_F < 50$ nm
 $N \sim (W/\lambda_F)^{d-1}$, $d = 2, 3$

Tube=conduction channel with some transparency \mathcal{T}_i , $0 < \mathcal{T}_i < 1$

Channels similar, but conduct differently

Open channel $\mathcal{T} = 1$ perfect transmission

Closed channel $\mathcal{T} = 0$ insulator

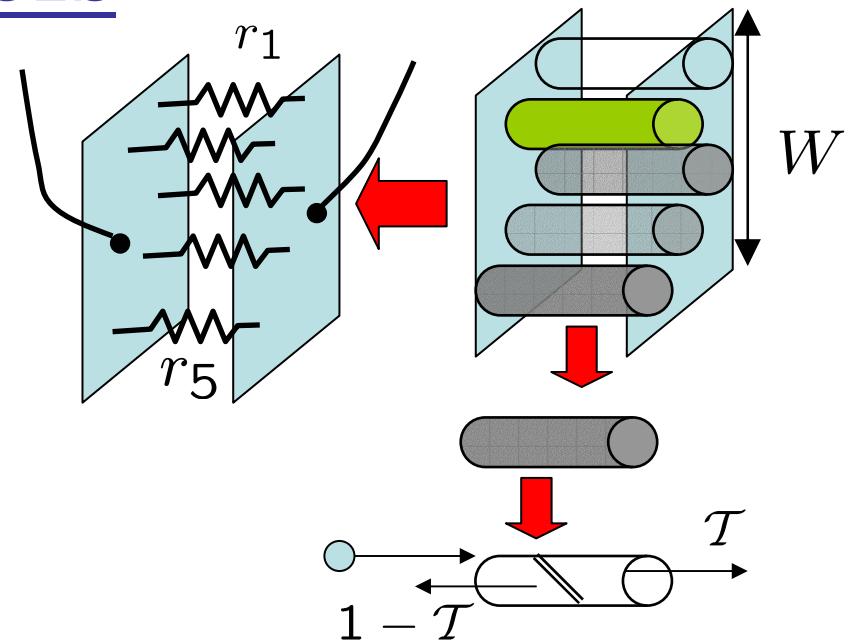


Channels

Find $G = \frac{1}{R} = \sum \frac{1}{r_i}$

Landauer formula

$$G = \frac{e^2}{h} \sum_{i=1}^N T_i, \quad N \sim \left(\frac{W}{\lambda_F}\right)^{d-1}$$

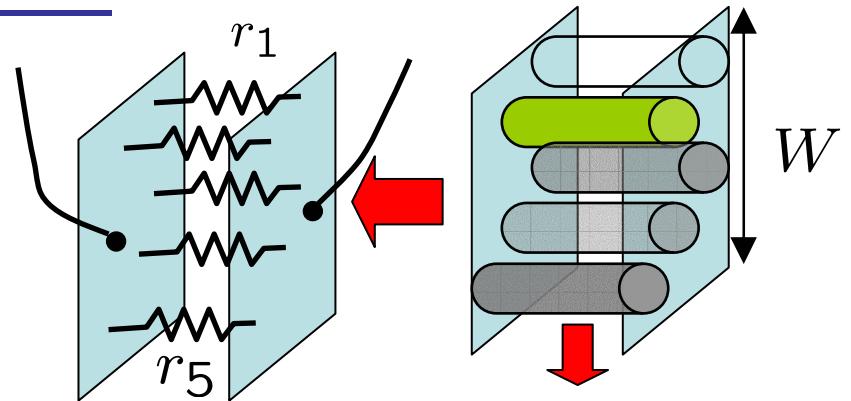


Channels

Find $G = \frac{1}{R} = \sum \frac{1}{r_i}$

Landauer formula

$$G = \frac{e^2}{h} \sum_{i=1}^N T_i, \quad N \sim \left(\frac{W}{\lambda_F}\right)^{d-1}$$



Ballistic Quantum Point Contact (QPC)

Classical contact (Sharvin) conductance

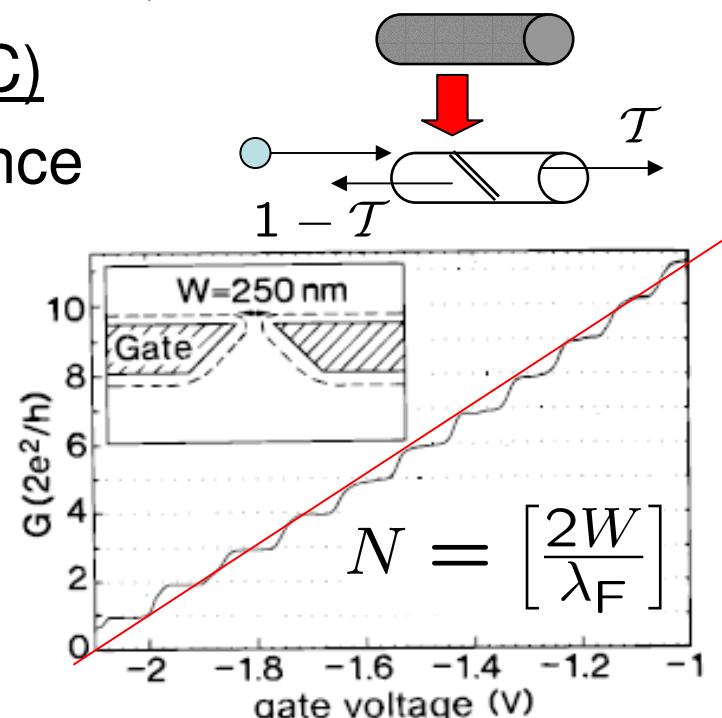
$$G_c = \frac{e^2}{h} \begin{cases} W k_F / \pi & d = 2 \\ S k_F^2 / 4\pi & d = 3 \end{cases} = \frac{N}{26k\Omega}$$

Conductance quantization (steps)

Ideal channels not always possible

Set $\{T_i\}$ is sample's PIN

Easier with only one channel...



van Wees '88

Poisson in one channel

Uncorrelated events

Schottky'1918

$$\langle q \rangle = e \sum_{n=0}^{\infty} n P(n) = e\lambda$$

$$\langle q^2 \rangle = e^2 \sum_n n^2 P(n) = e^2(\lambda + \lambda^2)$$

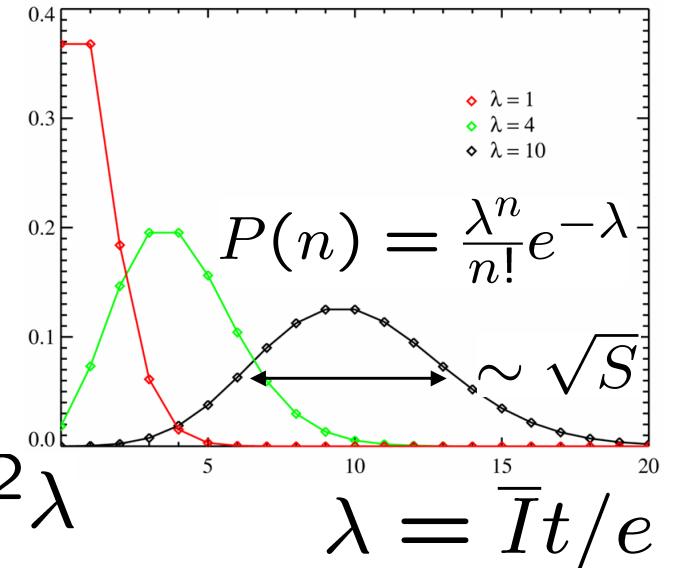
$$\langle \langle q^2 \rangle \rangle = \langle q^2 \rangle - \langle q \rangle^2 = e^2 \lambda$$

Average charge $q = e\lambda = \bar{I}t$

Shot noise—distribution width, $S_S = e^2 \lambda$

Fano factor, noise-to-signal ratio

$$\mathcal{F} = \frac{S}{e_0 I} = 1$$



Poisson in one channel

Uncorrelated events

$$\langle q \rangle = e \sum_{n=0}^{\infty} n P(n) = e\lambda$$

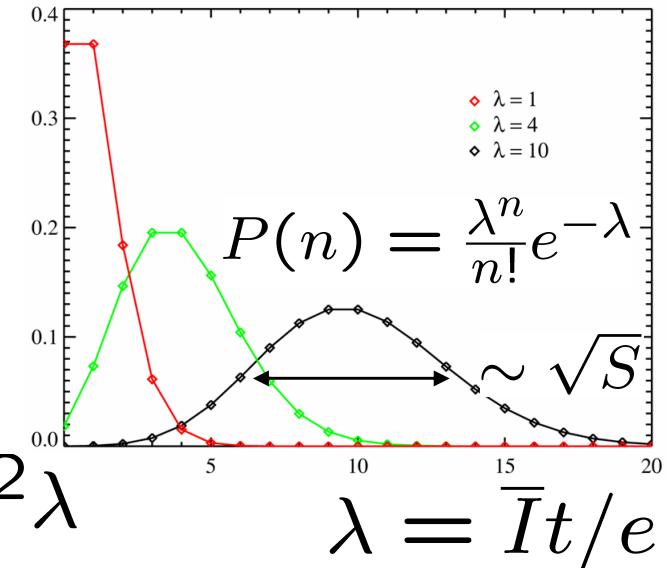
$$\langle q^2 \rangle = e^2 \sum_n n^2 P(n) = e^2(\lambda + \lambda^2)$$

$$\langle \langle q^2 \rangle \rangle = \langle q^2 \rangle - \langle q \rangle^2 = e^2 \lambda$$

Average charge $q = e\lambda = \bar{I}t$

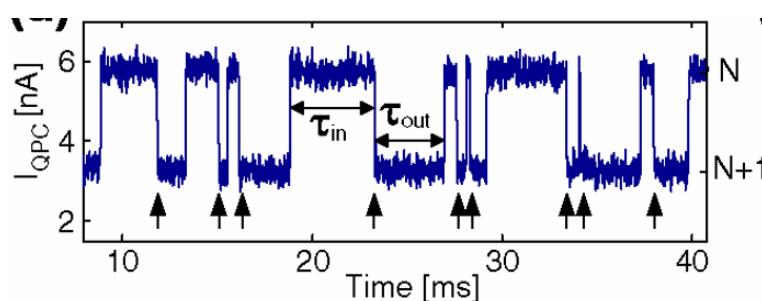
Shot noise—distribution width, $S_S = e^2 \lambda$

Schottky'1918

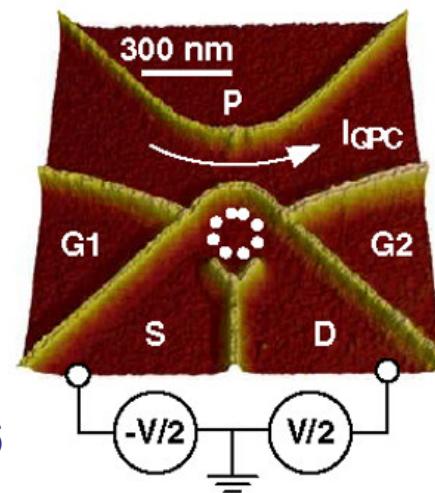
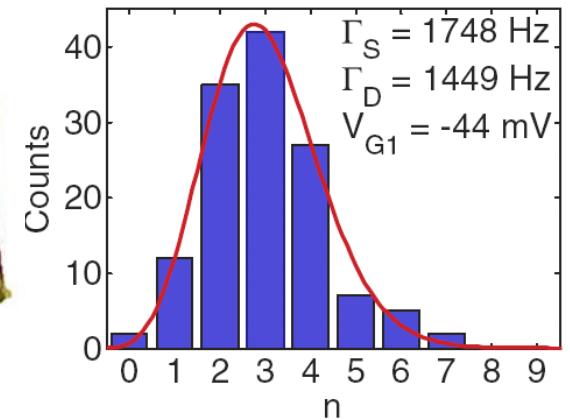


Fano factor, noise-to-signal ratio

$$\mathcal{F} = \frac{S}{e_0 I} = 1$$



Gustavsson et al '06



Good channels (metals)

- **Unpredictable results**
- During time t make $N = eVt/h$ attempts with n successes

$$P(n|N) = C_N^n \mathcal{T}^n (1 - \mathcal{T})^{N-n}$$

$$\langle q \rangle = e \sum_{n=0}^N n P(n|N) = eN\mathcal{T}$$

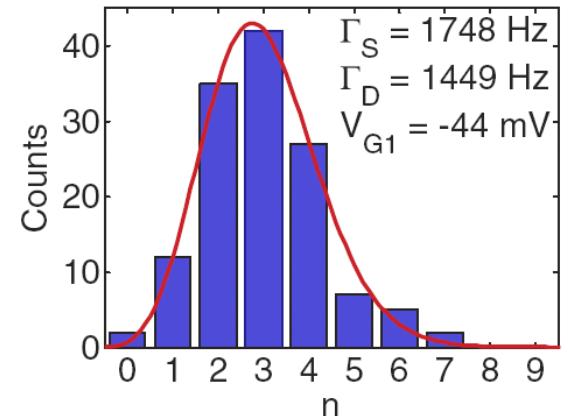
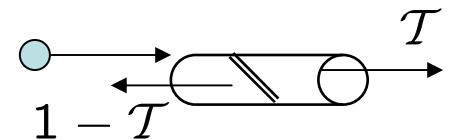
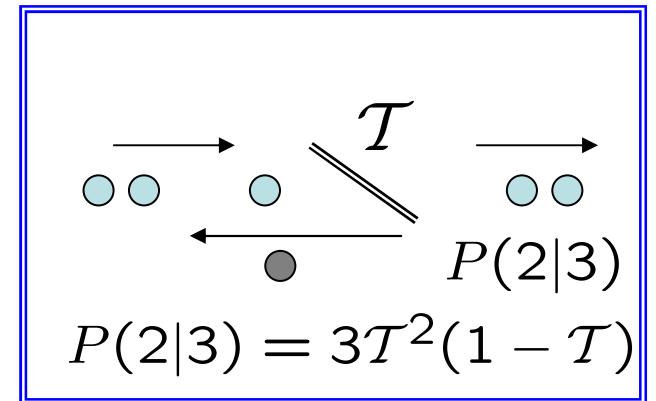
$$\langle q^2 \rangle = (eN\mathcal{T})^2 + e^2 N\mathcal{T}(1 - \mathcal{T})$$

Shot noise is sub-Poissonian!

$$S_S = e^2 N \mathcal{T} (1 - \mathcal{T})$$

$$\mathcal{F} = 1 - \mathcal{T} < 1$$

Good \mathcal{T} – very different from classics
Not **rare** anymore!

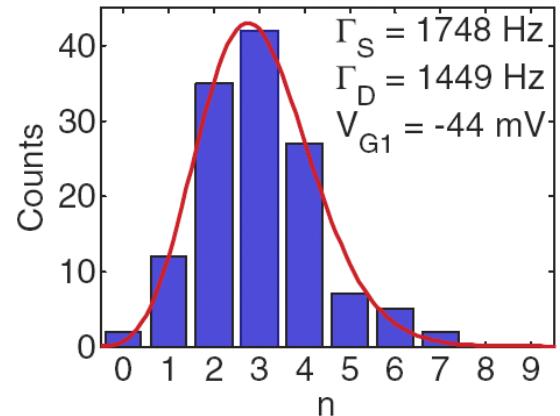
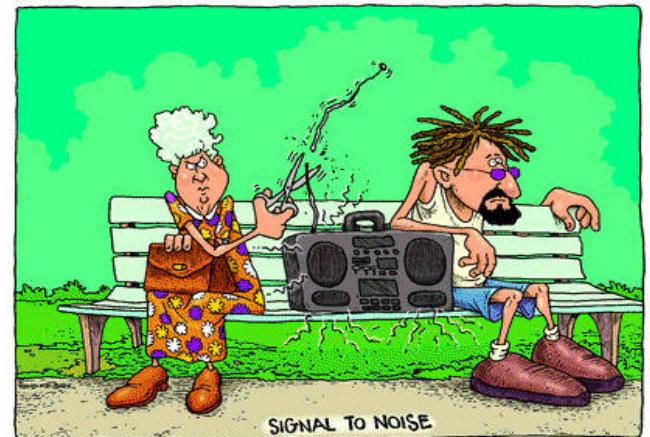


Various fluctuations

- Shot noise
- ✓ Results unique for each experiment
- ✓ Noise is super-Poissonian for photons, sub-Poissonian for electrons

$$\mathcal{F}_{ph} = 1 + \mathcal{T} \quad \mathcal{F}_e = \frac{q}{e_0} (1 - \mathcal{T})$$

- ✓ F.f. measures charge $q \neq e_0$



The noise is the signal

R. Landauer

Various fluctuations

- Shot noise
- ✓ Results unique for each experiment
- ✓ Noise is super-Poissonian for photons, sub-Poissonian for electrons

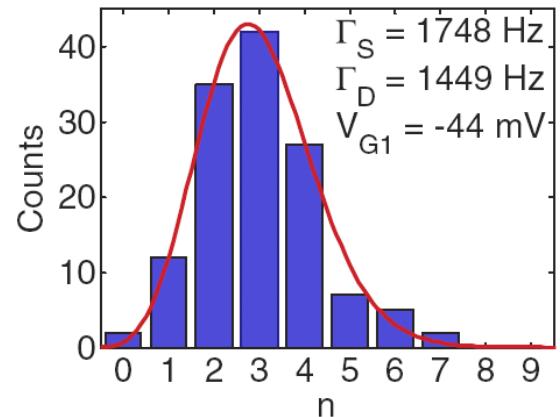
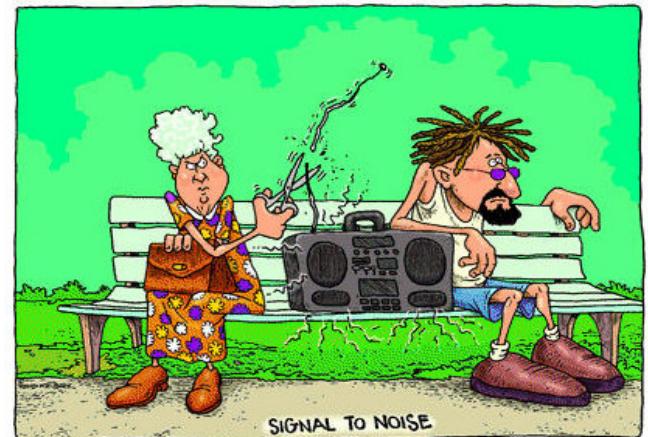
$$\mathcal{F}_{ph} = 1 + \mathcal{T} \quad \mathcal{F}_e = \frac{q}{e_0} (1 - \mathcal{T})$$

- ✓ F.f. measures charge $q \neq e_0$

Now:

- Mesoscopic fluctuations
- ✓ Set $\{\mathcal{T}_i\}$ is sample's PIN
- ✓ Many channels give averaged \mathcal{F}

Different distributions of $\{\mathcal{T}_i\}$
give different results



The noise is the signal

R. Landauer

Fano factor in diffusive wires

$$\mathcal{F} = \left\langle \frac{\sum \mathcal{T}(1-\mathcal{T})}{\sum \mathcal{T}} \right\rangle$$

Conductance estimate: $\mathcal{T} \sim l/L \ll 1$
Poissonian (rare events) expected in
diffusive wires, $\mathcal{F} = 1$

Fano factor was found very close to 1/3
(SURPRISE?)

Henny et al '99



Fano factor in diffusive wires

$$\mathcal{F} = \left\langle \frac{\sum \mathcal{T}(1-\mathcal{T})}{\sum \mathcal{T}} \right\rangle$$

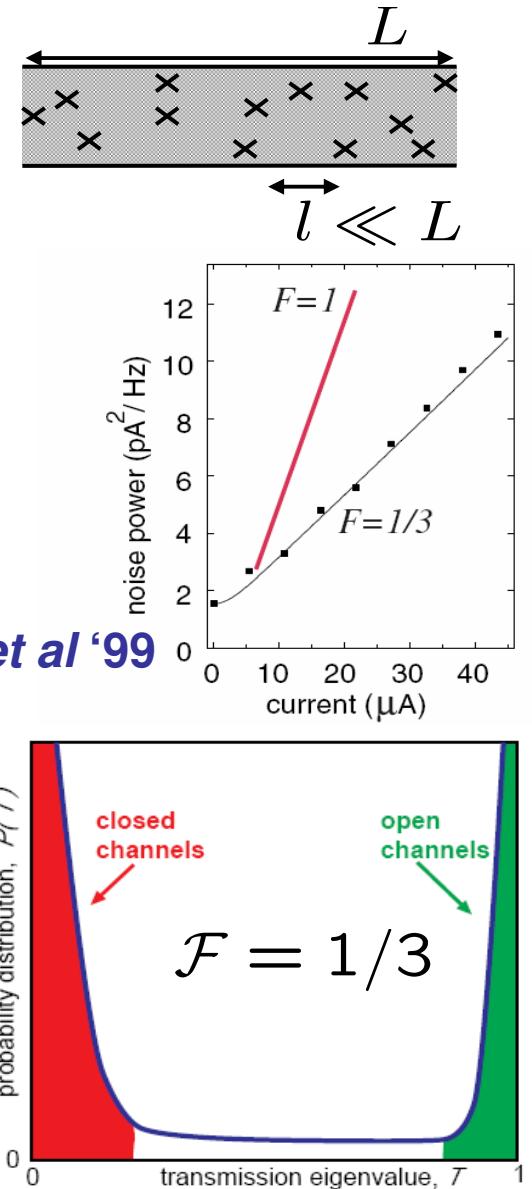
Conductance estimate: $\mathcal{T} \sim l/L \ll 1$
 Poissonian (rare events) expected in
 diffusive wires, $\mathcal{F} = 1$

Fano factor was found very close to 1/3
(SURPRISE?)

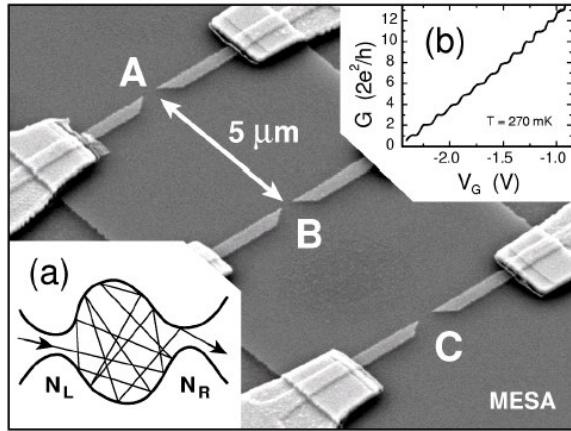
Contrary to naïve ideas: open channels
 with $\mathcal{T} \rightarrow 1$ do exist even if $l \ll L$

$$\rho(\mathcal{T}) = \frac{h\langle G \rangle}{2e^2} \frac{1}{\mathcal{T}\sqrt{1-\mathcal{T}}}$$

Beenakker-Büttiker'92, Nagaev'92



Quantum dots



$$\rho(T) = \frac{N}{\pi\sqrt{T(1-T)}} \Rightarrow \mathcal{F} = \frac{1}{4}$$

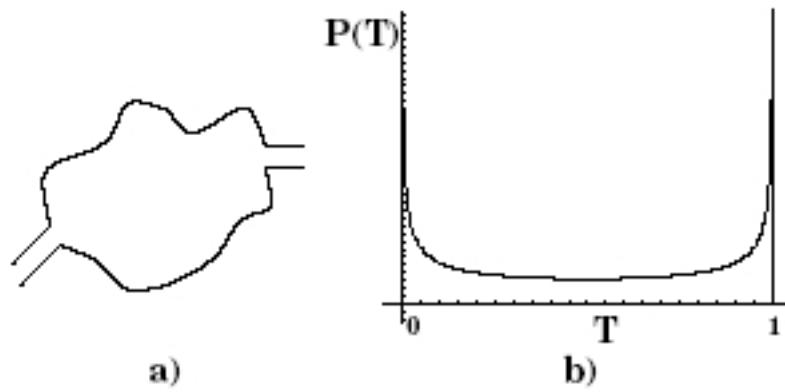
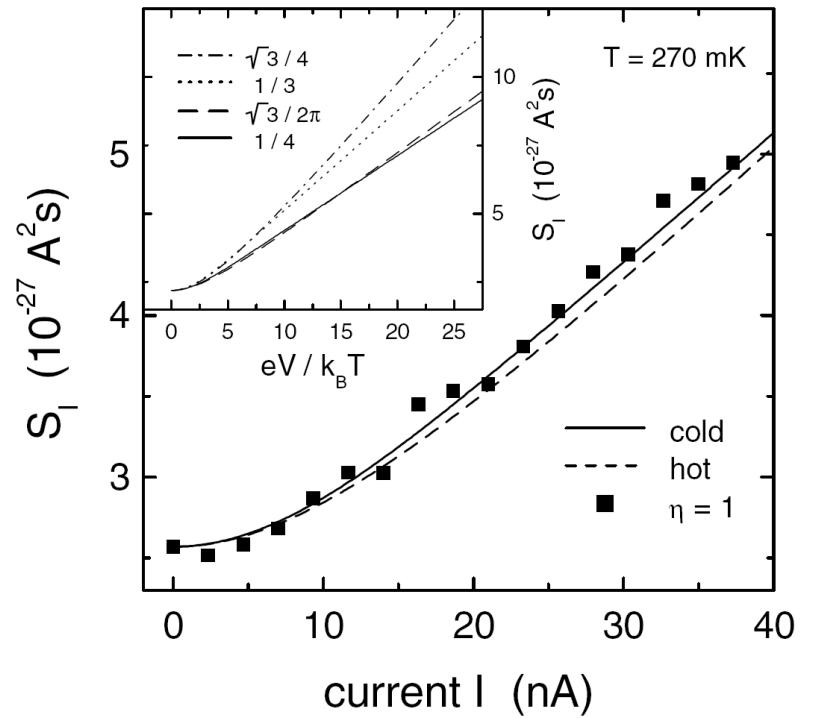


FIG. 3. Shot noise of a symmetric cavity and theoretical predictions for cold (solid line) and hot electrons (dashed line). Inset: comparison of the noise of a chaotic cavity ($1/4$ and $\sqrt{3}/2\pi$) with a diffusive wire ($1/3$ and $\sqrt{3}/4$) for cold and hot electrons.

Oberholzer *et al* '01

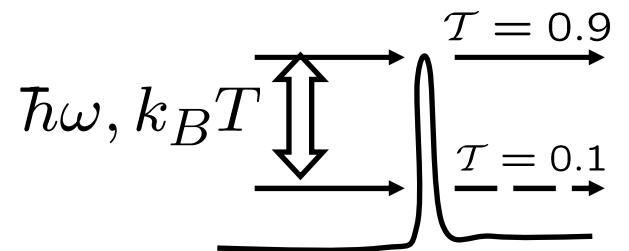
So, everything is clear?

- We forgot too many things...
Electrons interact!
Nonzero temperatures
(useless Nyquist noise)
Electrons have different energies
Transmission depends on energy

$$S_S = \frac{e^2}{h} \mathcal{T} (1 - \mathcal{T}) \cdot eV$$

$$S_N = \frac{2e^2}{h} \mathcal{T} \cdot k_B T$$

$$S_N + S_S \approx \frac{2e^2}{h} \mathcal{T} \cdot k_B T^*$$

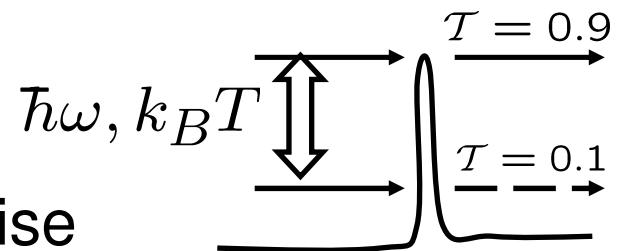


So, everything is clear?

- We forgot too many things...
Electrons interact!
Nonzero temperatures
(useless Nyquist noise)
Electrons have different energies
Transmission depends on energy

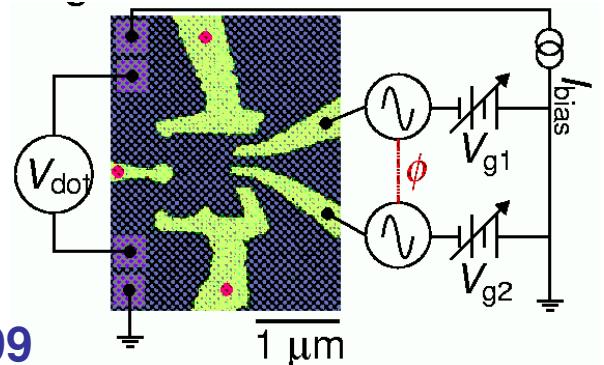
1. AC-biased quantum dot creates dc-current. Can one kill noise and reach $\mathcal{F} \rightarrow 0$?

$$S_S = \frac{e^2}{h} \mathcal{T} (1 - \mathcal{T}) \cdot eV$$
$$S_N = \frac{2e^2}{h} \mathcal{T} \cdot k_B T$$
$$S_N + S_S \approx \frac{2e^2}{h} \mathcal{T} \cdot k_B T^*$$

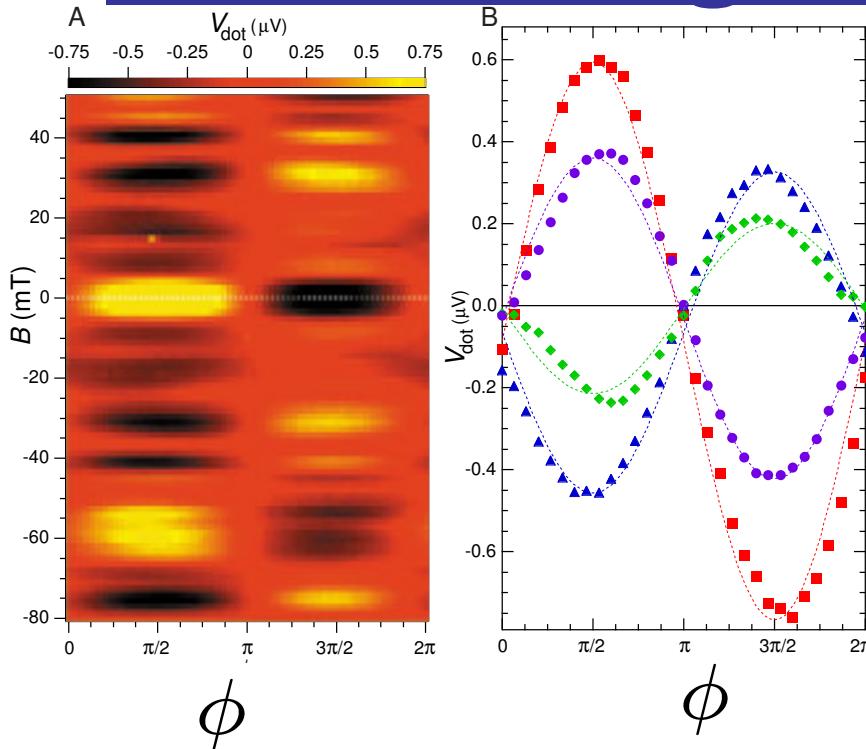


2. Can one change the noise? Yes!

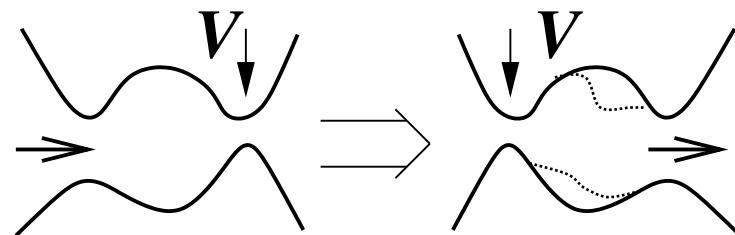
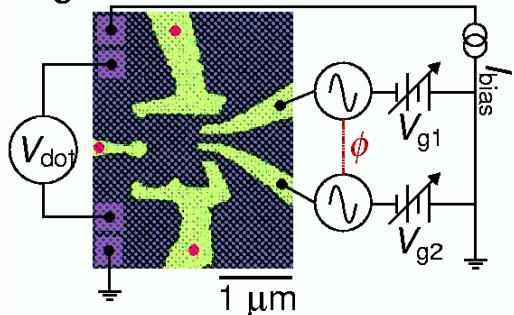
Switkes *et al* '99



Noise through quantum pumps

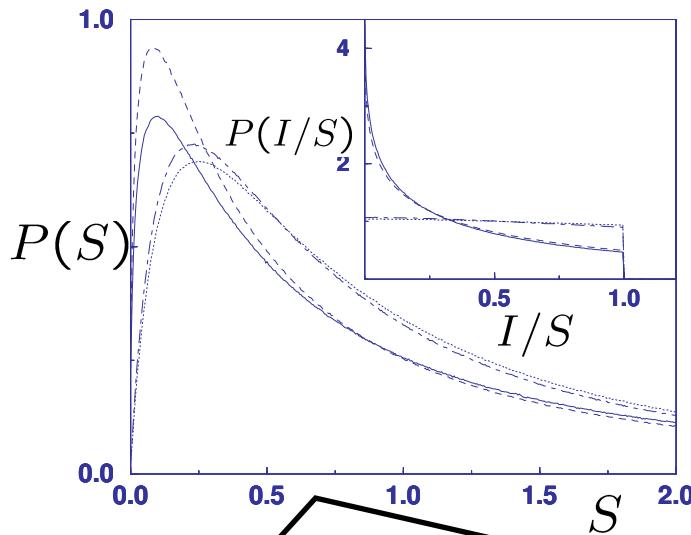


Out-of-phase voltages
pump electronic wave-
function from one reservoir
to the other

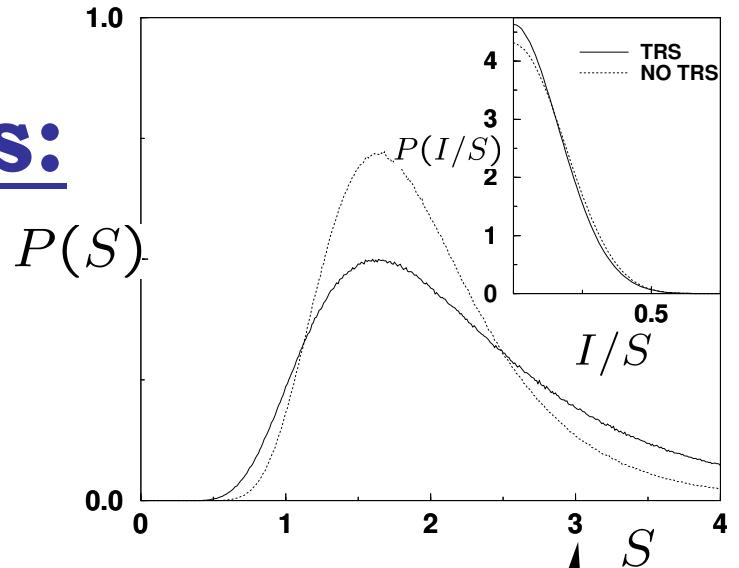


DC-current $\propto V_1 V_2 \sin \phi$ can have any sign
(Brouwer' 98)

Q: Can we have zero noise?



Results:



Single-channel dot

$$N_L = N_R = 1$$

$P(S)$ highly non-Gaussian, modified by interaction

$I/S < 1$ is limited and $\mathcal{F} = S/I > 1$

super-Poissonian!

Multi-channel dot

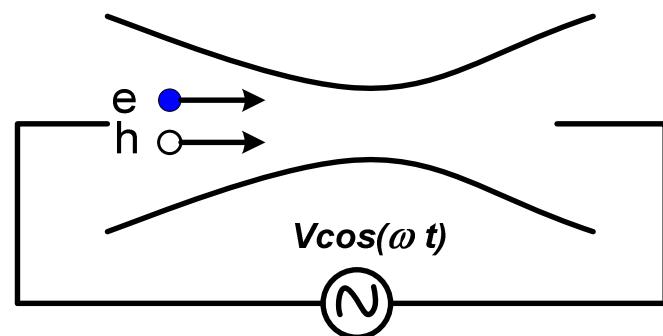
$$N_L = N_R = 5$$

$P(S)$, $P(I/S)$ are closer to Gaussian

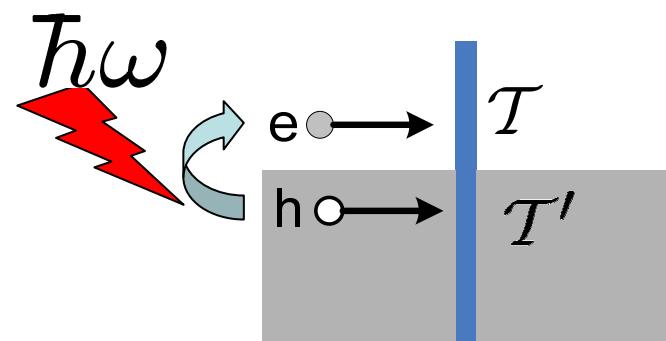
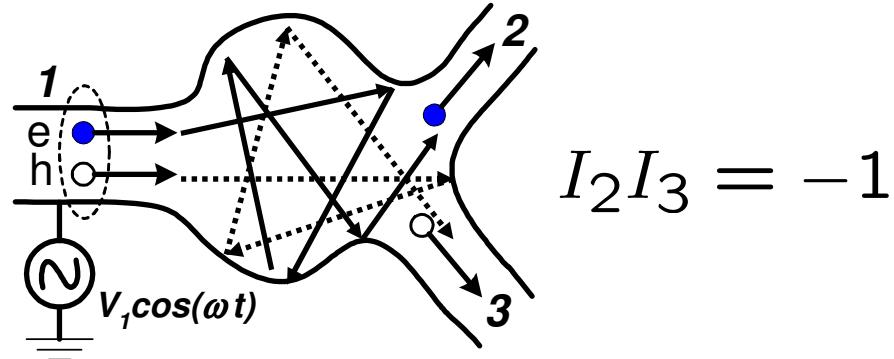
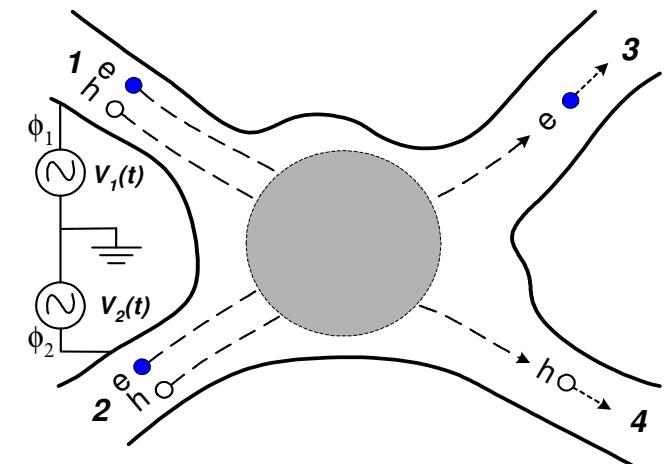
Photo-assisted shot noise

- Experiment on noise in QPC or quantum dots at low T

Reydellet et al' 03

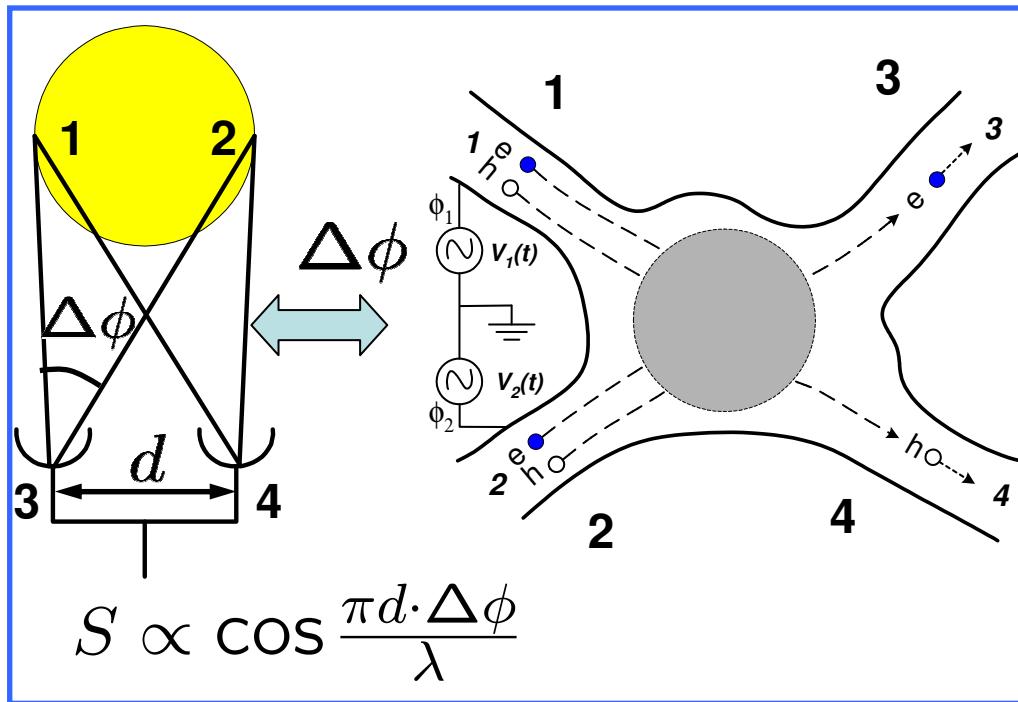


Electrons with energy $-\epsilon$ below E_F excited to $\hbar\omega - \epsilon > 0$ leaves behind a hole $-\epsilon$



Stellar interferometry in dots

HBT-interferometer: intensity-intensity correlations from incoherent sources measure small angles $\Delta\phi$



In solid-state we can change $\Delta\phi$ ourselves!

$$V_1(t) = V \cos(\omega t)$$

$$V_2(t) = V \cos(\omega t + \Delta\phi)$$

Noise is maximized at

$$\Delta\phi = \chi = \arg(s_{13}^\dagger s_{32} s_{24}^\dagger s_{41})$$

Rychkov, Polianski, and Büttiker '05

Variation of $\Delta\phi$ controls the correlations

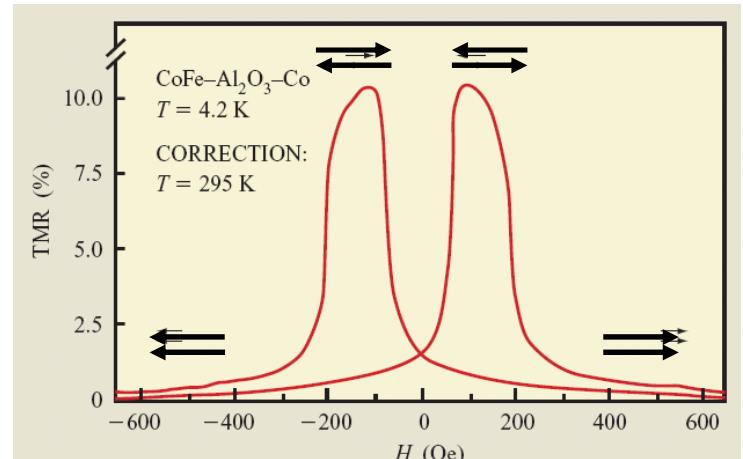
What if you don't want noise (HDD), but include spins?

Magnetoresistance in memory

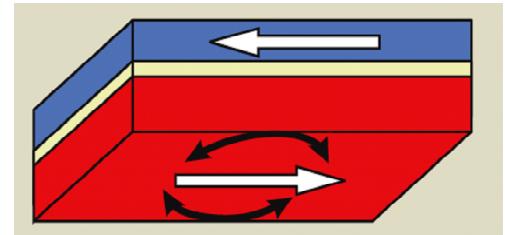
- Read/write in HDD based on magnetoresistance: different layer configurations --different resistance

Strong field \vec{H} aligns others $\uparrow\uparrow$

- ✓ Write: field of write-head switches free layer (keep 0 or 1)
- ✓ Read: CPP current detects layer



$\longrightarrow + H$



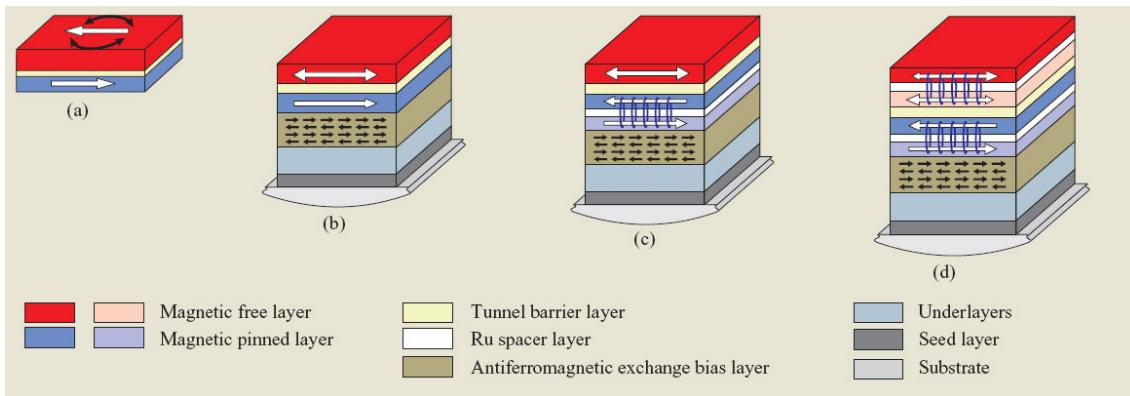
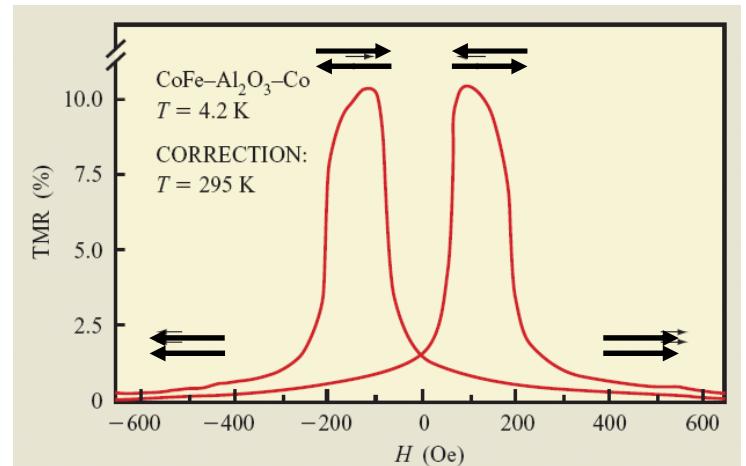
Magnetoresistance in memory

- Read/write in HDD based on magnetoresistance: different layer configurations --different resistance

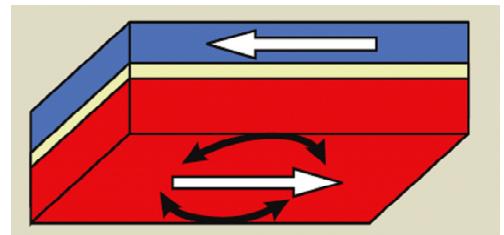
Strong field \vec{H} aligns others $\uparrow\uparrow$

- ✓ Write: field of write-head switches free layer (keep 0 or 1)
- ✓ Read: CPP current detects layer

Operate when one layer is fixed



$\longrightarrow + H$



Parkin'05

IBM J. Res. Dev (online)

Switching by current

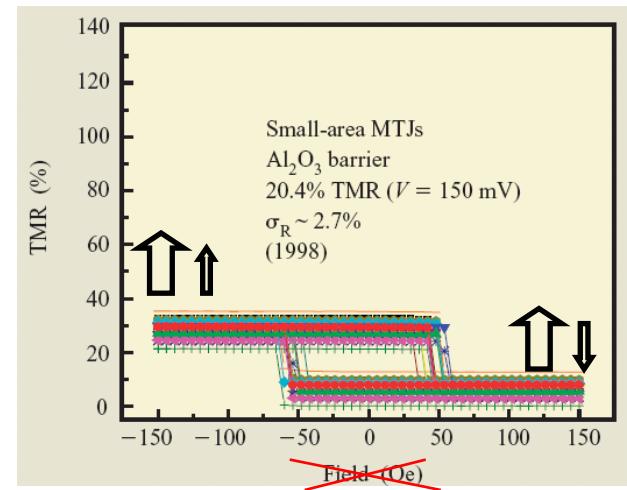
- Can current play the role of \vec{H}

Could we use electron spins \vec{S} ?

Use GMR (Nobel-2007):

Filtering: Parallel $\vec{s} \uparrow\uparrow \vec{m}$ are better transmitted, then anti-parallel $\vec{s} \downarrow\uparrow \vec{m}$

Spins rotate \vec{m} (spin torque)



j ?

Switching by current

- Can current play the role of \vec{H}

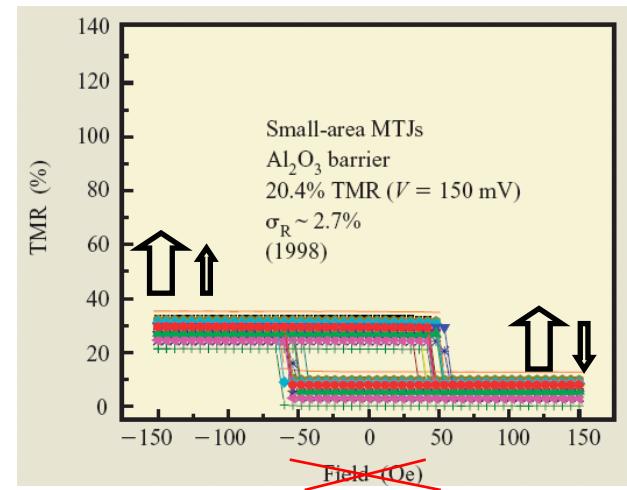
Could we use electron spins \vec{S} ?

Use GMR (Nobel-2007):

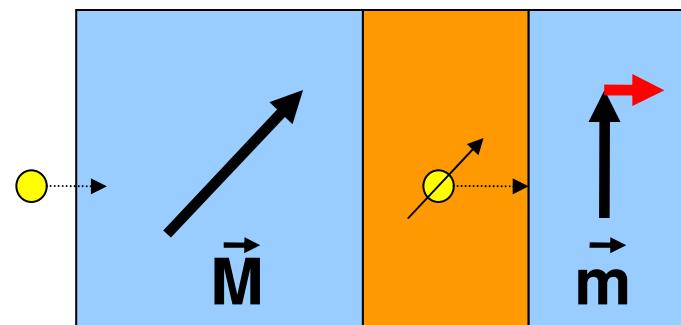
Filtering: Parallel $\vec{S} \uparrow\uparrow \vec{m}$ are better transmitted, then anti-parallel $\vec{S} \downarrow\uparrow \vec{m}$

Spins rotate \vec{m} (spin torque)

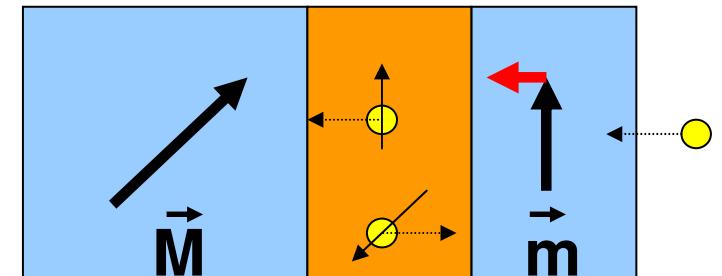
Depending on the current direction, \vec{m} is rotated into P or AP configuration



j ?

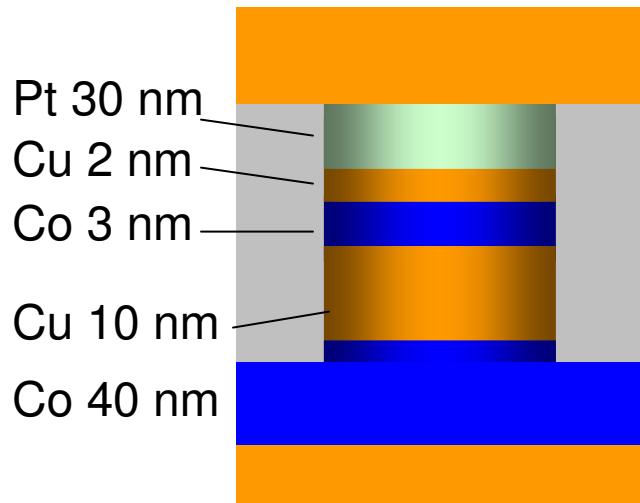


Negative current flow

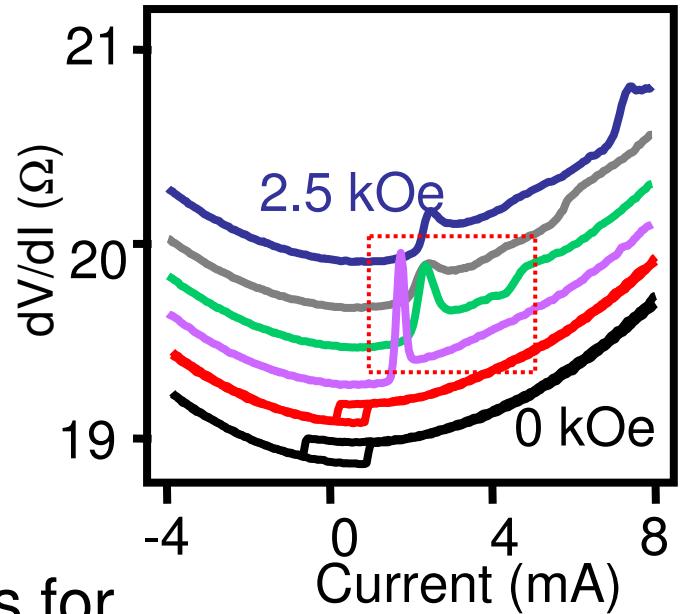


Positive current flow

Experiment in Cornell



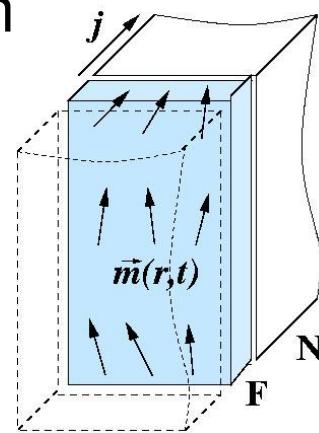
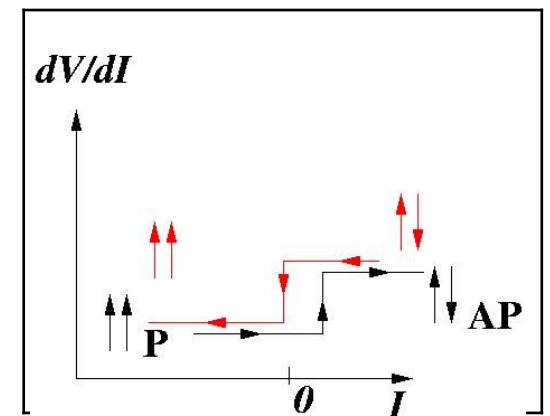
Kiselev *et al* '03



Switch from hysteresis to weird effects for
one current-direction

Hysteresis: MRAM

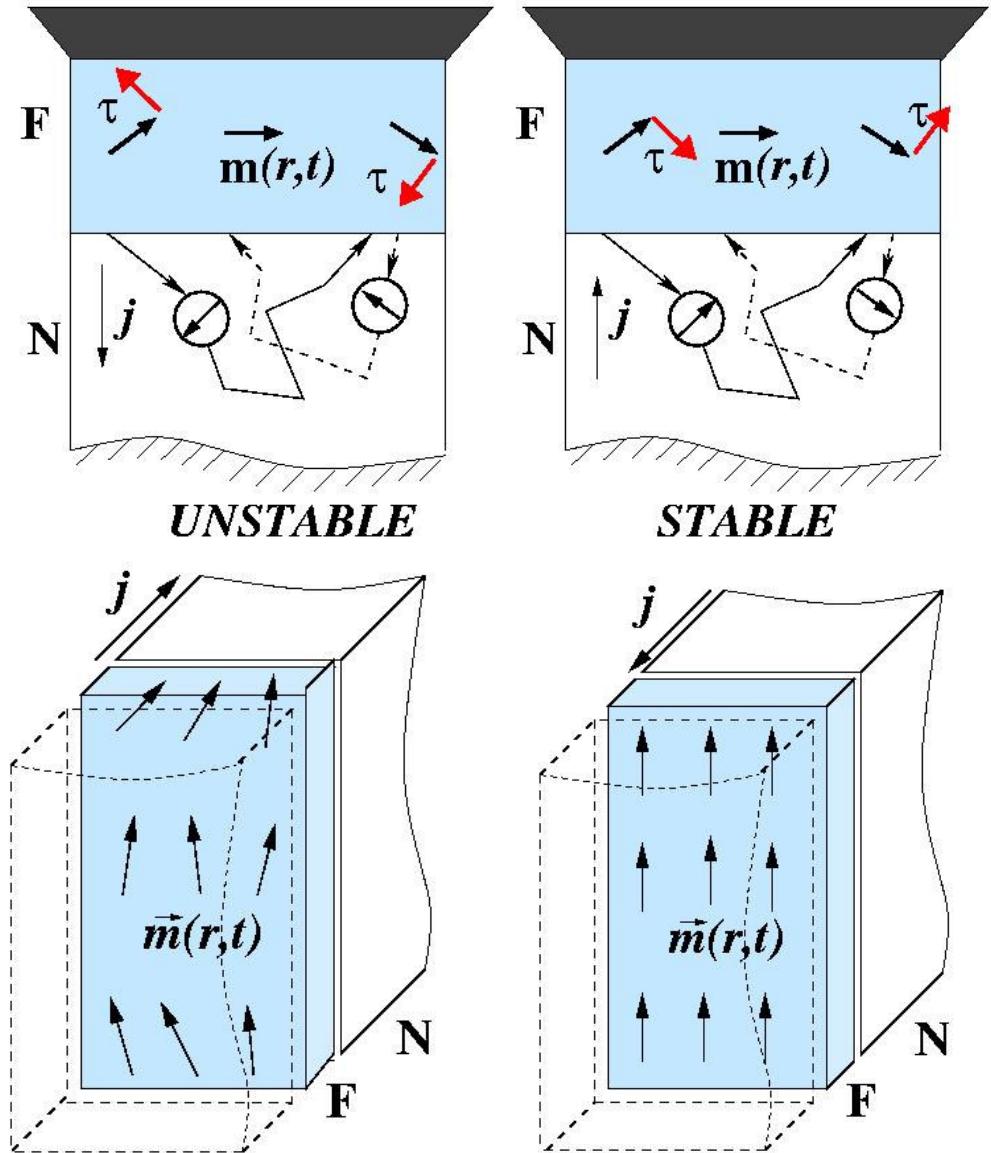
Wave: spin-transfer
oscillators



With transverse variation of m

Transverse spin diffusion of reflected/transmitted electrons in normal metal creates spin torque

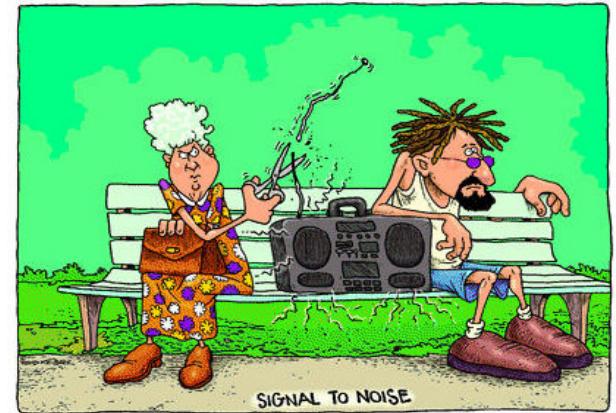
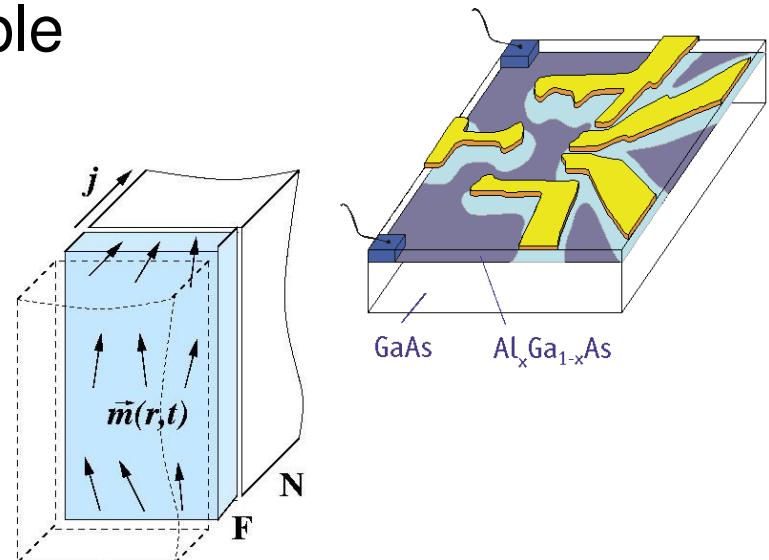
Direction of current defines sign of the torque



Conclusions

- Mesoscopics is when classical physics breaks down.
Can be 0.1 nm, can be $>10 \mu\text{m}$
- Fluctuations belong to quantum physics:
 - ✓ Each sample is unique
 - ✓ Electrons are unique too
- Noise gives information unavailable from current measurements (interactions, decoherence)
- Quantum mechanics can be useful in applications (spins)

A lot more is left to do...



Recommended Reading

- **Quantum Transport in Semiconductor Nanostructures**,
Beenakker and van Houten, *Solid State Physics* **44**, 1 (1991) or
[cond-mat/0412664](https://arxiv.org/abs/cond-mat/0412664) (general review of 2D mesoscopics)
- **Electronic transport in mesoscopic physics** Datta (1995) **MIPT library**
(popular book on mesoscopics)
- **Введение в мезоскопическую физику**, Имри (2004) **MIPT library**
(обзор мезоскопической теории)
- **Concepts in spin electronics**, Maekawa (ed.) (2006) **MIPT library**
(modern concepts in spintronics)
- **Shot Noise in Mesoscopic Conductors**, Blanter and Büttiker, *Phys. Rep.* **336**, 1 (2000) or [cond-mat/9910158](https://arxiv.org/abs/cond-mat/9910158) (general review of noise)
- **Random-matrix theory of quantum transport**, Beenakker, *Rev. Mod. Phys.* **69**, 731 (1997) or [cond-mat/9612179](https://arxiv.org/abs/cond-mat/9612179) (review of dots, wires, superconductors)
- **Quantum Shot Noise**, Beenakker and Schonberger, *Physics Today*, 37 (May 2003), [cond-mat/0605025](https://arxiv.org/abs/cond-mat/0605025)
- **The Statistical Theory of Mesoscopic Noise**, Levitov , [cond-mat/0210284](https://arxiv.org/abs/cond-mat/0210284)

Go to arXiv.org !!!