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10-адические числа
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10-адические числа — это всевозможные
бесконечные последовательности цифр 0,1,2,. . . ,9
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10-адическая арифметика

10-адические числа можно складывать и умножать "в
столбик"

Получается, что

9, 99, 999,. . . "сходится"к -1

3, 33, 333,. . . "сходится"к −13

В каком смысле "сходится"?
Последовательность чисел an, n = 0, 1, 2, . . .,
сходится к a, если для любого ε > 0 найдется N
такое, что

|an − a| < ε

как только n > N . Наша "сходимость"явно НЕ
такая!!!
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Целые p-адические числа

Фиксируем простое число p и рассмотрим множество
Zp всех бесконечных строчек . . . α2α1α0, где
αi ∈ {0, 1, . . . , p− 1}, и зададим на Zp операции
сложения и умножения с помощью алгоритмов
сложения и умножения "в столбик"для чисел,
представленных в системе счисления с основанием p.

Множество Zp c так определенными операциями
сложения и умножения называется кольцом целых
p-адических чисел.
В частности, Z2, кольцо целых 2-адических чисел —
это множество всех бесконечных бинарных строк с
обычными операциями сложения и умножения чисел
в двоичной системе.
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Кольцо Z2

Этот пример показывает, что . . . 11111 = −1 в Z2.

. . . 1 1 1 1

+

. . . 0 0 0 1

. . . 0 0 0 0
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Кольцо Z2

. . . 0 1 0 1 0 1

×

. . . 0 0 0 0 1 1

. . . 0 1 0 1 0 1

+

. . . 1 0 1 0 1
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Кольцо Z2

Значит,

. . . 01010101 = −
1

3
в Z2
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Кольцо Z2

И эту арифметику прекрасно
понимает даже калькулятор!
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Кольцо Z2

Строчкам, в которых лишь конечное число единиц,
соответствуют неотрицательные рациональные числа

. . . 00011 = 3

3 = 1 ∙ 20 + 1 ∙ 21 + 0 ∙ 22 + 0 ∙ 23 + . . .
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Кольцо Z2

Строчкам, в которых лишь конечное число нулей,
соответствуют отрицательные рациональные числа

. . . 111100 = −4

−4 = 0 ∙ 20 + 0 ∙ 21 + 1 ∙ 22 + 1 ∙ 23 + . . .

Обратите внимание: −4 = (−1) ∙ 22

−1 = 1 ∙ 20 + 1 ∙ 21 + 1 ∙ 22 + 1 ∙ 23 + . . .
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Кольцо Z2

Периодическим (с какого-то места) строчкам
соответствуют рациональные числа, которые могут
быть представлены в виде несократимых дробей с
нечетными знаменателями

. . . 1010101 = −
1

3

−
1

3
= 1 ∙ 20 + 0 ∙ 21 + 1 ∙ 22 + 0 ∙ 23 + . . .
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Кольцо Z2

Всем остальным строчкам (т.е. тем, которые
НЕпериодичны НИ с какого места) НЕ
соответствуют ни рациональные, ни действительные,
ни комплексные числа

. . . 100001000100101
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Метрика на Z2

Определение 1. Пусть M 6= ∅, и пусть
d : M ×M → R≥0 — функция от двух переменных,
определенная на M и принимающая значения во
множеств неотрицательных действительных чисел.
Функция d наз. метрикой (а M — метрическим
пространством) если d удовлетворяет всем след.
условиям:

1. Для любых a, b ∈M : d(a, b) = 0⇐⇒ a = b.

2. Для любых a, b ∈M : d(a, b) = d(b, a).

3. Для любых a, b, c ∈M : d(a, b) ≤ d(a, c) + d(c, b).

Например, множество R всех действительных чисел есть
метрическое пространство с метрикой d(a, b) = |a− b|, где | ∙ |
— абсолютная величина. Неархимедова динамика, компьютеры и криптография – p. 6/21



Метрика на Z2

Будем считать, что расстояние d2(u, v) между строчка
u, v ∈ Z2 равно 2−`, где ` есть длина наибольшего
общего начального сегмента у u и v. Абсолютная
величина (=норма) 2-адического целого числа есть
расстояние от него до 0: ‖u‖2 = d2(u, 0). Т.о.,
d2(u, v) = ‖u− v‖2. Например,

. . . 101010101 = −
1

3
. . . 000000101 = 5





=⇒ d2

(

−
1

3
, 5

)

=
1

24
=
1

16

Иными словами,−13 ≡ 5 (mod 16);−
1
3 6≡ 5

(mod 32).
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Метрика на Z2

Будем считать, что расстояние d2(u, v) между строчка
u, v ∈ Z2 равно 2−`, где ` есть длина наибольшего
общего начального сегмента у u и v. Абсолютная
величина (=норма) 2-адического целого числа есть
расстояние от него до 0: ‖u‖2 = d2(u, 0). Т.о.,
d2(u, v) = ‖u− v‖2. Нетрудно видеть, что метрика
d2 удовлетворяет более сильному условию, чем (3) из
Определения 1:

(3′)Для всех a, b, c ∈ Z : d2(a, b) ≤ max{d2(a, c), d2(c, b)}.

Это условие наз. сильным неравенством
треугольника, а удовлетворяющая ему метрика наз.
неархимедовой метрикой, или ультраметрикой.
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Метрика на Z2

Будем считать, что расстояние d2(u, v) между строчка
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d2(u, v) = ‖u− v‖2. Нетрудно видеть, что метрика
d2 удовлетворяет более сильному условию, чем (3) из
Определения 1:

(3′)Для всех a, b, c ∈ Z : d2(a, b) ≤ max{d2(a, c), d2(c, b)}.

Удивительно, но факт: При сложении отрезка с
самим собой он может стать короче, чем был!
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Метрика на Z2

Будем считать, что расстояние d2(u, v) между строчка
u, v ∈ Z2 равно 2−`, где ` есть длина наибольшего
общего начального сегмента у u и v. Абсолютная
величина (=норма) 2-адического целого числа есть
расстояние от него до 0: ‖u‖2 = d2(u, 0). Т.о.,
d2(u, v) = ‖u− v‖2. Нетрудно видеть, что метрика
d2 удовлетворяет более сильному условию, чем (3) из
Определения 1:

(3′)Для всех a, b, c ∈ Z : d2(a, b) ≤ max{d2(a, c), d2(c, b)}.

Удивительно, но факт: Все треугольники
равнобедренные! Каждая точка внутри окружности
является ее центром!
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Сходимость в Z2

Поскольку метрика на Z2 задана, можно говорить о
сходящихся последовательностях, пределах,
непрерывных функциях, производных и т.п.
Определение 2 (Предел). 2-адическое целое z
является пределом последовательности {zi}∞i=0, если
для любого ε > 0 найдется N такое, что
‖zi − z‖2 < ε как только i > N .

Однако, согласно определению 2-адической метрики,
величина ‖zi − z‖2 может принимать только значения
вида2−` для подходящих ` = 0, 1, 2, . . .; поэтому
можно считать, что ε = 2−r, где r = 0, 1, 2, . . ..
А тогда можно переписать определение в
эквивалентном виде: Неархимедова динамика, компьютеры и криптография – p. 7/21



Сходимость в Z2

Поскольку метрика на Z2 задана, можно говорить о
сходящихся последовательностях, пределах,
непрерывных функциях, производных и т.п.
Определение 3 (Предел, экв. форм.). 2-адическое
целое z есть предел посл-ти {zi}∞i=0 если для любого
(достаточно большого) положительного
рационального целого K найдется N такое, что
zi ≡ z (mod 2K) при всех i > N .
Замечание: По определению 2-адической метрики

‖zi − z‖2 ≤ 2
−K ⇐⇒ zi ≡ z (mod 2K)
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Сходимость в Z2

Поскольку метрика на Z2 задана, можно говорить о
сходящихся последовательностях, пределах,
непрерывных функциях, производных и т.п.

Пример: 1, 3, 7, 15, 31, . . . , 2i − 1 . . . 2
−→− 1

. . . 0 0 0 0 1 = 1

. . . 0 0 0 1 1 = 3

. . . 0 0 1 1 1 = 7

. . . 0 1 1 1 1 = 15

∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙
. . . 1 1 1 1 1 = −1
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Непрерывность на Z2

Определение 4 (Непрерывная функция) Функция
f : Z2 → Z2 наз. непрерывной в точке z ∈ Z2, если
для любого (достаточно большого) положительного
рационального целого M найдется положительное
рациональное целое L такое, что f(x) ≡ f(z)

(mod 2M) как только x ≡ z (mod 2L)

Замечание: Функция f наз. равномерно непрерывной
на Z2, если f непрерывна в каждой точке z ∈ Z2, и L
зависит только от M и не зависит от z.
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Непрерывность на Z2

Определение 4 (Непрерывная функция) Функция
f : Z2 → Z2 наз. непрерывной в точке z ∈ Z2, если
для любого (достаточно большого) положительного
рационального целого M найдется положительное
рациональное целое L такое, что f(x) ≡ f(z)

(mod 2M) как только x ≡ z (mod 2L)
Важный пример: Функции треугольного
вида=Т-функции=функции, удовлетворяющие
условию Липшица с константой 1=совместимые
функции=детерминированные функции:
x ≡ z (mod 2M) =⇒ f(x) ≡ f(z) (mod 2M)
Эквивалентно: ‖f(a)− f(b)‖2 ≤ ‖a− b‖2

Неархимедова динамика, компьютеры и криптография – p. 8/21



Непрерывность на Z2

Определение 4 (Непрерывная функция) Функция
f : Z2 → Z2 наз. непрерывной в точке z ∈ Z2, если
для любого (достаточно большого) положительного
рационального целого M найдется положительное
рациональное целое L такое, что f(x) ≡ f(z)

(mod 2M) как только x ≡ z (mod 2L)
Важный пример: Функции треугольного
вида=Т-функции=функции, удовлетворяющие
условию Липшица с константой 1=совместимые
функции=детерминированные функции:
x ≡ z (mod 2M) =⇒ f(x) ≡ f(z) (mod 2M)

Эквивалентно: (. . . , χ2, χ1, χ0)
f
7→

(. . . , ψ2(χ0, χ1, χ2), ψ1(χ0, χ1), ψ0(χ0))
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Непрерывность на Z2

Важный пример: Функции треугольного
вида=Т-функции=функции, удовлетворяющие
условию Липшица с константой 1=совместимые
функции=детерминированные функции:
x ≡ z (mod 2M) =⇒ f(x) ≡ f(z) (mod 2M)

автомат

α↓i Φi(α
↓
0, . . . , α

↓
i )

n-битовый выходm-битовый вход
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Непрерывность на Z2

Важный пример: Функции треугольного
вида=Т-функции=функции, удовлетворяющие
условию Липшица с константой 1=совместимые
функции=детерминированные функции:
x ≡ z (mod 2M) =⇒ f(x) ≡ f(z) (mod 2M)
Примеры Т-функций:

Арифметические операции (сложение,
умножение, ...);

Поразрядные логические операции (OR, XOR,
AND, NOT, ...);

Всевозможные композиции арифметических и
поразрядных логических операций.
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Непрерывность на Z2

Важный пример: Функции треугольного
вида=Т-функции=функции, удовлетворяющие
условию Липшица с константой 1=совместимые
функции=детерминированные функции:
x ≡ z (mod 2M) =⇒ f(x) ≡ f(z) (mod 2M)
Некоторые другие «естественные» функции тоже
являются T -функциями:

экспоненцирование, ↑:
(u, v) 7→ u ↑ v = (1 + 2 ∙ u)v;

возведение в отрицательную степень,
u ↑ (−r) = (1 + 2 ∙ u)−r, r ∈ N;

деление / : u/v = u ∙ (v ↑ (−1)) = u
1+2∙v .
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Непрерывность на Z2

Важный пример: Функции треугольного
вида=Т-функции=функции, удовлетворяющие
условию Липшица с константой 1=совместимые
функции=детерминированные функции:
x ≡ z (mod 2M) =⇒ f(x) ≡ f(z) (mod 2M)
Это тоже Т-функция одного 2-адического
переменного x:

(1+x)XOR4 ∙

(

1−2 ∙
x AND x2 + x3 OR x4

3− 4 ∙ (5 + 6x5)x6XORx7

)7− 8x8

9+10x9
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Непрерывность на Z2

Важный пример: Функции треугольного
вида=Т-функции=функции, удовлетворяющие
условию Липшица с константой 1=совместимые
функции=детерминированные функции:
x ≡ z (mod 2M) =⇒ f(x) ≡ f(z) (mod 2M)

Вывод: Компьютер осуществляет
приближенные (относительно
2-адической метрики) вычисления
значений непрерывных функций на
Z2.
Редукцию по модулю 2n, где n — разрядность процессора,
компьютер делает автоматически. Неархимедова динамика, компьютеры и криптография – p. 8/21



Дифференцируемость на Z2

Определение 5. Функция
F = (f1, . . . , fm) : Zn2 → Zm2 наз. дифференцируемой
(дифференцируемой по модулю 2M ) в т.
u = (u1, . . . , un) ∈ Zn2 , если для любого достаточно
большого M ∈ N существует N ∈ N и
(n×m)-матрица F ′k(u) над Z2 (матрица Якоби
функции F в т. u), такая что для любого K ≥ N и
любого h = (h1, . . . , hn) ∈ Zn2 вып. сравнение

F (u+ h) ≡ F (u) + h ∙ F ′M(u) (mod 2
M+K)

как только h ≡ 0 (mod 2K). Равномерная
дифференцируемость (по модулю 2M ): для данного
M , наименьшее N обозн.NM(F ).Неархимедова динамика, компьютеры и криптография – p. 9/21



Дифференцируемость на Z2

Др. словами, обычная дифференцируемость функции
f одной переменной означает, что для любого M

∥
∥
∥
∥
f(x+ h)− f(x)

h
− f ′M(x)

∥
∥
∥
∥
2

≤
1

2M

если h достаточно мало, т.е. ‖h‖2 ≤ 2−NM (f), в то
время как дифференцируемость по модулю 2M

означает, что нер-во вып. для M фиксированного.

В p-адическом анализе жаргонизм «производная с точностью до
M знаков после запятой» имеет точный смысл!
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Дифференцируемость на Z2

Функция f(x) = x AND C равномерно
дифференцируема на Z2 при любом C ∈ Z
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Дифференцируемость на Z2

Функция f(x) = x AND C равномерно
дифференцируема на Z2 при любом C ∈ Z

Если n ≥ `(|C|), где `(|C|)— число разрядов,
необходимых для двоичной записи |C|, то
f(x+ 2ns) = f(x) при C ≥ 0, и
f(x+ 2ns) = f(x) + 2ns при C < 0.

Помним, что 2-адическое представление отрицательного числа
−R начинается с двоичного представления числа 2`(R) −R в
младших разрядах, за которыми следуют . . . 11: −1 = . . . 111,
−3 = . . . 11101, и т.п..
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Дифференцируемость на Z2

Функция f(x) = x AND C равномерно
дифференцируема на Z2 при любом C ∈ Z
f ′(x) = 0, если C ≥ 0, и f ′(x) = 1 если C < 0
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Дифференцируемость на Z2

Функция f(x) = x AND C равномерно
дифференцируема на Z2 при любом C ∈ Z
f ′(x) = 0, если C ≥ 0, и f ′(x) = 1 если C < 0

Функция f(x) = x XOR C равномерно
дифференцируема на Z2 при любом C ∈ Z; f ′(x) = 1,
если C ≥ 0, и f ′(x) = −1, если C < 0.

Это сразу следует из первого утверждения в силу
тождества u XOR v = u+ v − 2(x AND v)
Т.о., (x XOR C)′ = x′ + C ′ − 2(x AND C)′ =
1 + 2 ∙ (0 если C ≥ 0;−1 если C < 0).
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Дифференцируемость на Z2

Функция f(x) = x AND C равномерно
дифференцируема на Z2 при любом C ∈ Z
f ′(x) = 0, если C ≥ 0, и f ′(x) = 1 если C < 0

Функция f(x) = x XOR C равномерно
дифференцируема на Z2 при любом C ∈ Z; f ′(x) = 1,
если C ≥ 0, и f ′(x) = −1, если C < 0.

Функции x mod 2n, NOT(x) и x OR C, где C ∈ Z,
равномерно дифференцируемы на Z2, и
(x mod 2n)′ = 0, (NOT x)′ = −1, (x OR c)′ = 1, если
C ≥ 0, (x OR C)′ = 0 если C < 0.
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Дифференцируемость на Z2

Функция f(x) = x AND C равномерно
дифференцируема на Z2 при любом C ∈ Z
f ′(x) = 0, если C ≥ 0, и f ′(x) = 1 если C < 0

Функция f(x) = x XOR C равномерно
дифференцируема на Z2 при любом C ∈ Z; f ′(x) = 1,
если C ≥ 0, и f ′(x) = −1, если C < 0.

Функция f(x, y) = x XOR y не везде
дифференцируема на Z22 как функция двух
переменных. Однако она равномерно
дифференцируема по модулю 2 на Z22; ее частные
производные по модулю 2 равны 1 всюду на Z22.
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Динамика: некоторые понятия

Динамическая система — это просто пара 〈S, f〉, где
S – непустое множество, а f : S→ S – отображение.

Последовательность

x0, x1 = f(x0), . . . , xi+1 = f(xi) = f
i+1(x0), . . .

наз. траекторией (или орбитой) точки x0, а
последовательность

y0 = F (x0), y1 = F (x1), . . . , yi = F (xi), . . . .

наз. наблюдаемой, где F : S→ T.

Обычно f и F — измеримые и непрерывные отображения.

Говорят, что отображение F : S→ T вероятностных
пр-в с мерой μ сохраняет меру μ, если
μ(F−1(S)) = μ(S) для любого измеримого
подмножества S ⊂ T. Отображение f : S→ S наз.
эргодическим, если мера любого f -инвариантного
μ-измеримого подмн-ва S ∈ S есть либо 0, либо 1:
f−1(S) = S =⇒ μ(S) ∈ {0, 1}.
Для конечных мн-в: если #M =M и A ⊂M, то
μ(A) = #A

M
.
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Отображение f : S→ S наз.
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Говорят, что отображение F : S→ T вероятностных
пр-в с мерой μ сохраняет меру μ, если
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подмножества S ⊂ T. Отображение f : S→ S наз.
эргодическим, если мера любого f -инвариантного
μ-измеримого подмн-ва S ∈ S есть либо 0, либо 1:
f−1(S) = S =⇒ μ(S) ∈ {0, 1}.

Для конечных мн-в: если #M =M и A ⊂M, то
μ(A) = #A

M
.
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Динамика: некоторые понятия

Говорят, что отображение F : S→ T вероятностных
пр-в с мерой μ сохраняет меру μ, если
μ(F−1(S)) = μ(S) для любого измеримого
подмножества S ⊂ T. Отображение f : S→ S наз.
эргодическим, если мера любого f -инвариантного
μ-измеримого подмн-ва S ∈ S есть либо 0, либо 1:
f−1(S) = S =⇒ μ(S) ∈ {0, 1}.
Для конечных мн-в: если #M =M и A ⊂M, то
μ(A) = #A

M
.

F сохраняет μ⇐⇒ F сбалансировано; т.е. у каждой
точки одно и то же число F -прообразов.
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Динамика: некоторые понятия

Говорят, что отображение F : S→ T вероятностных
пр-в с мерой μ сохраняет меру μ, если
μ(F−1(S)) = μ(S) для любого измеримого
подмножества S ⊂ T. Отображение f : S→ S наз.
эргодическим, если мера любого f -инвариантного
μ-измеримого подмн-ва S ∈ S есть либо 0, либо 1:
f−1(S) = S =⇒ μ(S) ∈ {0, 1}.
Для конечных мн-в: если #M =M и A ⊂M, то
μ(A) = #A

M
.

Сбалансированность отображения f означает, что f
биективно.
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Динамика: некоторые понятия

Говорят, что отображение F : S→ T вероятностных
пр-в с мерой μ сохраняет меру μ, если
μ(F−1(S)) = μ(S) для любого измеримого
подмножества S ⊂ T. Отображение f : S→ S наз.
эргодическим, если мера любого f -инвариантного
μ-измеримого подмн-ва S ∈ S есть либо 0, либо 1:
f−1(S) = S =⇒ μ(S) ∈ {0, 1}.
Для конечных мн-в: если #M =M и A ⊂M, то
μ(A) = #A

M
.

f эргодично⇐⇒ f транзитивно, т.е. орбита каждой
точки имеет максимально длинный период; именно,
длины M : fk(x) = x =⇒M | k.
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Эргодическая теория Т-функций

На пространстве Z2 существует естественная
вероятностная мера: нормализованная мера Хаара μ2.

Пример. (Klimov–Shamir, 2002)Функция
x+ (x2 OR 5) эргодична.
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Эргодическая теория Т-функций

На пространстве Z2 существует естественная
вероятностная мера: нормализованная мера Хаара μ2.

Именно, множество a+2kZ2 (мн-во всех 2-адических
целых чисел, сравнимых с a по модулю 2k) есть шар
радиуса 2−k; его объем есть μ2(a+ 2kZ2) = 2−k. Это
вероятность того, что первые k разрядов у случайно
выбранного 2-адического числа такие же, как у a.
∙ ∙ ∙ ∗ ∗ ∗ ∗ ∗ 0101 = 5 + 16 ∙ Z2 = −13 + 16 ∙ Z2
— это 2-адический шар радиуса (и объема) 116 с
центром в точке 5 (или, что то же самое, в точке −13);
все 2-адические целые, сравнимые с 5 по модулю 16,
образуют этот шар.

Пример. (Klimov–Shamir,
2002)Функция x+ (x2 OR 5) эргодична.
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Эргодическая теория Т-функций

Т-функция F : Zm2 → Zn2 наз. сбалансированной по
модулю 2k, если индуцированное отображение
F mod 2k сбалансировано, т.е. F mod 2k отображает
(Z/2kZ)m НА (Z/2kZ)n, и каждый элемент из
(Z/2kZ)n имеет одно и то же число F -прообразов в
(Z/2kZ)m.

Т-функция F : Z2 → Z2 наз. биективной (соотв.,
транзитивной) по модулю 2k если индуцированное
отображение F mod 2k : x 7→ F (x) (mod 2k) кольца
вычетов Z/2kZ в себя биективно (соотв.,
транзитивно).

Пример. (Klimov–Shamir, 2002)Функция
x+ (x2 OR 5) эргодична.
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Эргодическая теория Т-функций

Теорема 1.T -функция F : Zn2 → Zm2 сохраняет меру
μ2 тогда и только тогда, когда каждое
индуцированное отображение

F mod 2k : (Z/2kZ)n → (Z/2kZ)m

сбалансировано, k = 1, 2, 3, . . ..

При m = n = 1, T -функция F эргодична (по
отношению к мере μ2) тогда и только тогда, когда
каждое индуцированное отображение

F mod 2k : Z/2kZ→ Z/2kZ

транзитивно, k = 1, 2, 3, . . ..

Пример. (Klimov–Shamir, 2002)Функция
x+ (x2 OR 5) эргодична.
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Эргодическая теория Т-функций

Другими словами, Т-функция
сохраняет меру (эргодична) как
функция, определенная на
множестве Z2 всех бесконечных
бинарных слов, тогда и только тогда,
когда она сохраняет меру (эргодична)
как функция, определенная на
множестве Z/2kZ всех бинарных
слов длины k, для всех k = 1, 2, . . ..

Пример. (Klimov–Shamir, 2002)Функция
x+ (x2 OR 5) эргодична.
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Эргодическая теория Т-функций

Теорема 2. Пусть Т-функция F : Zn2 → Zm2
равномерно дифференцируема по модулю 2.F
сохраняет меру, если она сбалансирована по модулю
2k для некоторого k ≥ N1(F ), и ранг ее матрицы
Якоби F ′1(u) по модулю 2 равен m во всех точках
u = (u1, . . . , un) ∈ (Z/2kZ)n. При m = n, эти условия
и необходимы, т.е. F сохраняет меру тогда и только
тогда, когда она биективна по модулю 2k для
некоторого k ≥ N1(F ), и det(F ′1(u)) 6≡ 0 (mod 2) во
всех точках u = (u1, . . . , un) ∈ (Z/2kZ)n. Более того,
в этом случае F сохраняет меру тогда и только
тогда, когда она сбалансирована по модулю 2N1(F )+1.

Пример. (Klimov–Shamir, 2002)Функция
x+ (x2 OR 5) эргодична.
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Эргодическая теория Т-функций

Следующая Т-функция f сохраняет меру (т.е.
биективна по модулю 2r для всех r = 1, 2, . . ..):
f(x) = (x+ 3x3) XOR x3

Док-во: f(x) ≡ x (mod 2), т.е. биективна по модулю
2. Т. к. XOR равномерно дифференцируема по
модулю 2, то и ф-я f р. д. по модулю 2, и N1(f) = 1.
Именно, при ` ≥ 1

f(x+ 2`s) ≡

≡ (x+2`s+9x3+27x2∙2`s)XOR(x3+3x2∙2`s) (mod 2`+1)

≡ f(x)+2`s(1+27x2+3x2) ≡ f(x)+2`s (mod 2`+1)

Теперь применяем Теорему 2.

Пример.
(Klimov–Shamir, 2002)Функция x+ (x2 OR 5)
эргодична.
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Эргодическая теория Т-функций

Следующая Т-функция F сохраняет меру (т.е.
биективна по модулю 2r для всех r = 1, 2, . . ..):
F (x, y) = (x XOR (2(x AND y)), (y + 3x3) XOR x)
В с. д., F биективна по модулю 2,F равномерно

дифференцируема по модулю 2, и N1(F ) = 1; именно

F (x+ 2nt, y + 2ms) ≡

F (x, y) + (2nt, 2ms) ∙



1 x+ 1

0 1



 (mod 2k+1)

для всех m,n ≥ 1 (здесь k = min{m,n}); detF ′1(x, y) ≡ 1
(mod 2). Теперь применяем Теорему 2.

Пример.
(Klimov–Shamir, 2002)Функция x+ (x2 OR 5)
эргодична.
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Эргодическая теория Т-функций

Теорема 3. Пусть Т-функция f : Z2 → Z2 равномерно
дифференцируема по модулю 4 на Z2. Функция f
эргодична тогда и только тогда, когда она
транзитивна по модулю 2N2(f)+2.

Например, из этой теоремы следует, что полином с
рациональными целыми коэффициентами
транзитивен по каждому модулю 2n тогда и только
тогда, когда он транзитивен по модулю 8.
(М. В. Ларин)
Из Теоремы 2 следует, что полином с рациональными
целыми коэффициентами биективен по каждому
модулю 2n тогда и только тогда, когда он биективен
по модулю 4.

Пример. (Klimov–Shamir, 2002)
Функция x+ (x2 OR 5) эргодична.
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Эргодическая теория Т-функций

Пример. (Klimov–Shamir, 2002)Функция
x+ (x2 OR 5) эргодична.

В статье Klimov–Shamirупоминали мою публикацию
1993года с Теоремой 3, однако утверждали, что

“...neither the invertibility nor the cycle
structure ofx+ (x2 OR 5) could be determined
by his techniques.”

На самом деле, их результат мгновенно следует из
Theorem3.
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Эргодическая теория Т-функций

Пример. (Klimov–Shamir, 2002)Функция
x+ (x2 OR 5) эргодична.

Док-во: Функция f(x) = x+ (x2 OR 5) равномерно
дифференцируема на Z2:
f ′(x) = 1 + 2x ∙ (x OR 5)′ = 1 + 2x, и N2(f) = 3, т.к.
(x+ h) OR 5 = (x OR 5) + h если h ≡ 0 (mod 8)—
это очевидно ввиду того, что 5 =...000101.Для
завершения док-ва в силу Теоремы 3 достаточно
убедится, что f транзитивна по модулю 32, что и
делается с помощью прямых вычислений значений of
f(0), f(f(0)), . . . в Z/32Z.
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Эргодическая теория Т-функций

Пример. (Klimov–Shamir, 2002)Функция
x+ (x2 OR 5) эргодична.

Теорема 4. Т-функция f : Z2 → Z2 эргодична тогда и
только тогда, когда
f(x) = 1 + x+ 2 ∙ (g(x+ 1)− g(x)), где g — любая
Т-функция.
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Эргодическая теория Т-функций

Пример. (Klimov–Shamir, 2002)Функция
x+ (x2 OR 5) эргодична.

Теорема 4. Т-функция f : Z2 → Z2 эргодична тогда и
только тогда, когда
f(x) = 1 + x+ 2 ∙ (g(x+ 1)− g(x)), где g — любая
Т-функция.

f(x) = 2+
x

3
+
1

3x
+2

(
(x2 + 2x) XOR (1/3)

2x+ 3

) (x+1)AND(1/5)
1−2x

+

+ 2 ∙ NOT




(
(x2 − 1) XOR (1/3)

2x+ 1

)xAND(1/5)
5−2x



 .
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Поточное шифрование

К открытому тексту α0 α1 α2 . . .

прибавляем mod2 ⊕

гамму (=keystream) γ0 γ1 γ2 . . .

и получаем

шифрованный текст ζ0 ζ1 ζ2 . . .
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Поточное шифрование

Чтобы расшифровать сообщение, берем

шифрованный текст ζ0 ζ1 ζ2 . . .

прибавляем mod2 ⊕

ту же самую гамму γ0 γ1 γ2 . . .

и получаем

сообщение : α0 α1 α2 . . .
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Поточное шифрование

Чтобы расшифровать сообщение, берем

шифрованный текст ζ0 ζ1 ζ2 . . .

прибавляем mod2 ⊕

ту же самую гамму γ0 γ1 γ2 . . .

и получаем

сообщение : α0 α1 α2 . . .

Такое шифрование стойкое, если гамма случайна и
равновероятна (К. Шеннон).
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Псевдослучайный генератор

xix0 – ключ

f

F

xi+1 = f(xi)
переход

yi = F (xi)выход

(xi ∈ Bn, yi ∈ Bm, B = {0, 1})
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xix0 – ключ

f

F

xi+1 = f(xi)
переход

yi = F (xi)выход

(xi ∈ Bn, yi ∈ Bm, B = {0, 1}) f : Bn → Bn — функция
перехода,
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Псевдослучайный генератор

xix0 – ключ

f

F

xi+1 = f(xi)
переход

yi = F (xi)выход

(xi ∈ Bn, yi ∈ Bm, B = {0, 1}) f : Bn → Bn — функция
перехода, F : Bn → Bm — функция выхода. Можно
отождествить Bk = Z/2kZ, или Bk = (Z/2`Z)s, если k = `s.

Неархимедова динамика, компьютеры и криптография – p. 14/21



ПСГ как динамическая система

Посл-ть внутренних состояний ПСГ — это
траектория ключа

x0, x1 = f(x0), . . . , xi+1 = f(xi) = f
i+1(x0), . . . .

Неархимедова динамика, компьютеры и криптография – p. 15/21



ПСГ как динамическая система

Посл-ть внутренних состояний ПСГ — это
траектория ключа

x0, x1 = f(x0), . . . , xi+1 = f(xi) = f
i+1(x0), . . . .

Выходная посл-ть ПСГ — это наблюдаемая

y0 = F (x0), y1 = F (x1), . . . , yi = F (xi), . . . .
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Требования к ПСГ

Хороший ПСГ должен удовлетворять след. условиям:

Функция перехода f должна обеспечивать
псевдослучайность; в частности, равномерное
распределение и длинный период посл-ти
состояний

Функция выхода F не должна портить
псевдослучайность ; сверх того, в поточных
шифраторах именно F обеспечивает стойкость
шифрования

Чтобы ПСГ допускал простую программную
реализацию, обе функции f и F должны быть
несложными композициями элементарных
команд процессора: арифметических операций
(сложения, умножения,...) и поразрядных
логических операций (XOR, OR, AND, NOT)
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Функция выхода F не должна портить
псевдослучайность (в частности, выходная
посл-ть должна остаться равномерно
распределенной и иметь длинный период); сверх
того, в поточных шифраторах именно F
обеспечивает стойкость шифрования (в
частности, для данного yi, нахождение xi из
уравнения yi = F (xi)) должно быть
вычислительно трудоемкой задачей.
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Как этого добиться?

Чтобы выполнить условие 1 (из 3) можно взять
эргодическую Т-функцию f на Z2 (приведение по
модулю 2n, где n — длина регистра, компьютер
выполнит автоматически)

Посл-ть состояний

x0, x1 = f(x0), . . . , xi+1 = f(xi) = f
i+1(x0), . . .

тогда будет посл-тью n-разрядных слов максимально
длинного периода (длины 2n) и иметь строго
равномерное распределение: каждое n-разрядное
слово встретится на периоде ровно 1 раз.

Чтобы обеспечить выполнение условия 3, нужно
уметь строить эргодические (соотв., сохраняющие
меру) Т-функции в виде композиций элементарных
команд процессора.

Все это мы уже умеем делать. Например,
эргодические Т-функции можно строить с помощью
Теоремы 4, а сохраняющие меру — с помощью
Теоремы 2.
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Как этого добиться?

Чтобы выполнить первую часть условия 2, можно
взять сбалансированное отображение
F : Z/2nZ→ Z/2mZ. Если n = kr,m = ks, s 6 r, то
в качестве F можно взять сохраняющую меру
Т-функцию F : Zr2 → Zs2.

Если s� r, то таким образом можно добиться
выполнения второй части условия 2, т.к. в этом
случае уравнение yi = F (xi) имеет очень много
решений, 2k(r−s).

Чтобы обеспечить выполнение условия 3, нужно
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Латинские квадраты

Определение 6. Латинский квадрат порядка P —
P × P матрица содержащая P различных символов
(к-рые будем обозначать 0, 1, . . . , P − 1), такая, что в
каждой строке и в каждом столбце каждый символ
встречается ровно 1 раз.

Проблема в том, как написать программу,
генерирующую много больших латинских квадратов.
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Определение 6. Латинский квадрат порядка P —
P × P матрица содержащая P различных символов
(к-рые будем обозначать 0, 1, . . . , P − 1), такая, что в
каждой строке и в каждом столбце каждый символ
встречается ровно 1 раз.
В алгебре латинские квадраты наз. бинарными
квазигруппами: это алгебраические системы на
множестве A = {0, 1, . . . , P − 1} с единственной
бинарной операцией ∗, которая задается с помощью
таблицы Кэли, являющейся латинским квадратом.
Операция ∗ обратима по каждой переменной: для
любых a, b ∈ A, каждое из ур-ий a ∗ y = b и x ∗ a = b
имеет единственное решение. Операция ∗ не
обязательно ассоциативна.

Проблема в том, как написать программу,
генерирующую много больших латинских квадратов.

Неархимедова динамика, компьютеры и криптография – p. 18/21



Латинские квадраты

Определение 6. Латинский квадрат порядка P —
P × P матрица содержащая P различных символов
(к-рые будем обозначать 0, 1, . . . , P − 1), такая, что в
каждой строке и в каждом столбце каждый символ
встречается ровно 1 раз.
Другими словами, латинский квадрат — это функция
от двух переменных

F : A2 → A,

(где A = {0, 1, . . . , P − 1}), которая обратима (т.е.
биективна) по каждой из переменных.

Проблема в
том, как написать программу, генерирующую много
больших латинских квадратов.
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P × P матрица содержащая P различных символов
(к-рые будем обозначать 0, 1, . . . , P − 1), такая, что в
каждой строке и в каждом столбце каждый символ
встречается ровно 1 раз.
Пример латинского квадрата:

0 1 2 3 4 5

1 2 3 4 5 0

2 3 4 5 0 1

3 4 5 0 1 2

4 5 0 1 2 3

5 0 1 2 3 4

Проблема в том, как написать программу,
генерирующую много больших латинских квадратов.
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Латинские квадраты

Определение 6. Латинский квадрат порядка P —
P × P матрица содержащая P различных символов
(к-рые будем обозначать 0, 1, . . . , P − 1), такая, что в
каждой строке и в каждом столбце каждый символ
встречается ровно 1 раз.
Проблема в том, как написать программу,
генерирующую много больших латинских квадратов.

Более того, в о многих случаях (напр., в
смарт-картах) нвозможно хранить всю матрицу
целиком, поэтому программа должна для любых двух
данных чисел a, b ∈ {0, 1, . . . , P − 1} строить элемент
с номером (a, b).
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Как строить латинские квадраты

Основной инструмент — Следствие из Теоремы
2,которая справедлива для любого простого p:
Следствие 1. Равномерно дифференцируемая по
модулю p совместимая функция f : Z2p → Zp является
латинским квадратом по модулю pk для всех
k = 1, 2, . . ., если f mod pN1(f) — это латинский
квадрат, и ∂1f(u)

∂1xi
6≡ 0 (mod p) для всех

u ∈ (Z/pN1(f)Z)2, i = 1, 2.
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Следствие 1. Равномерно дифференцируемая по
модулю p совместимая функция f : Z2p → Zp является
латинским квадратом по модулю pk для всех
k = 1, 2, . . ., если f mod pN1(f) — это латинский
квадрат, и ∂1f(u)

∂1xi
6≡ 0 (mod p) для всех

u ∈ (Z/pN1(f)Z)2, i = 1, 2.
Пример: латинский квадрат порядка 2k.

Положим f(x, y) = x+ y + γ + 2 ∙ v(x, y), где v(x, y)
— любая Т-функция, γ ∈ {0, 1}.
Тогда f(x, y) mod 2— латинский квадрат, и
∂1f(x,y)
∂1x

≡ ∂1f(x,y)
∂1x

≡ 1 (mod 2).
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Следствие 1. Равномерно дифференцируемая по
модулю p совместимая функция f : Z2p → Zp является
латинским квадратом по модулю pk для всех
k = 1, 2, . . ., если f mod pN1(f) — это латинский
квадрат, и ∂1f(u)

∂1xi
6≡ 0 (mod p) для всех

u ∈ (Z/pN1(f)Z)2, i = 1, 2.
Пример: латинский квадрат порядка 2k ∙ 3` ∙ ∙ ∙ pr.
Положим f(x, y) = x+ y + 2 ∙ 3 ∙ ∙ ∙ p ∙ v(x, y), где
v(x, y)— любой полином с рациональными целыми
коэффициентами. Тогда f(x, y)— латинский квадрат

по модулям 2, 3, . . . , p, и ∂f(x,y)
∂x
≡ ∂f(x,y)

∂x
≡ 1 (mod q)

для всех q = 2, 3, . . . , p.
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Как строить латинские квадраты

Следствие 1. Равномерно дифференцируемая по
модулю p совместимая функция f : Z2p → Zp является
латинским квадратом по модулю pk для всех
k = 1, 2, . . ., если f mod pN1(f) — это латинский
квадрат, и ∂1f(u)

∂1xi
6≡ 0 (mod p) для всех

u ∈ (Z/pN1(f)Z)2, i = 1, 2.
Если g(x, y)— совместимый латинский квадрат
порядка P = 2 ∙ 3 ∙ ∙ ∙ p (нек-рые сомн-тели могут
отсутствовать), то
f(x, y) = g(x, y) + h(x, y) + 2 ∙ 3 ∙ ∙ ∙ p ∙ v(x, y)—
латинский квадрат порядка 2k ∙ 3` ∙ ∙ ∙ pr при любом
v(x, y) ∈ Z[x, y], и f(x, y) ≡ g(x, y) (mod P ).
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Ортогональные лат. квадраты

Два лат. квадрата порядка P наз. ортогональными
⇐⇒ при наложении их друг на друга каждая из P 2

упоряд. пар символов встречается ровно 1 раз.
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Два лат. квадрата порядка P наз. ортогональными
⇐⇒ при наложении их друг на друга каждая из P 2

упоряд. пар символов встречается ровно 1 раз.

0 1 2 0 1 2

1 2 0 2 0 1

2 0 1 1 2 0

(0, 0) (1, 1) (2, 2)

(1, 2) (2, 0) (0, 1)

(2, 1) (0, 2) (1, 0)
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Ортогональные лат. квадраты

Два лат. квадрата порядка P наз. ортогональными
⇐⇒ при наложении их друг на друга каждая из P 2

упоряд. пар символов встречается ровно 1 раз.
Следствие 2 [Теоремы 2]. Лат. квадраты
g, f : Z2p → Zp ортогональны mod pk k = 1, 2, . . .

⇐⇒ совместимая р. дифф. mod p ф-я
F (x, y) = (f(x, y), g(x, y)) : Z2p → Z2p
сохраняет меру. Это выполняется⇐⇒

det

(
∂1f(x,y)
∂1x

∂1g(x,y)
∂1x

∂1f(x,y)
∂1y

∂1g(x,y)
∂1y

)

6≡ 0 (mod p)

для всех (x, y) ∈ (Z/pN1(F )Z)2 Неархимедова динамика, компьютеры и криптография – p. 20/21



Ортогональные лат. квадраты

Два лат. квадрата порядка P наз. ортогональными
⇐⇒ при наложении их друг на друга каждая из P 2

упоряд. пар символов встречается ровно 1 раз.

f(x, y) mod 3 =




0 1 2

1 2 0

2 0 1



 g(x, y) mod 3 =




0 1 2

2 0 1

1 2 0





f(x, y) = x+y+3 ∙v(x, y); g(x, y) = 2x+y+3 ∙w(x, y)
v(x, y), w(x, y) ∈ Z3[x, y]— любые

det

(
1 2

1 1

)

≡ 2 (mod 3)
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Ортогональные лат. квадраты

Два лат. квадрата порядка P наз. ортогональными
⇐⇒ при наложении их друг на друга каждая из P 2

упоряд. пар символов встречается ровно 1 раз.

Пусть P — мн-во нечетных простых чисел,
v(x, y), w(x, y) ∈ Z[x, y]. Тогда след. лат. квадраты
ортогональны mod P для любого числа P , все
простые делители к-рого лежат в P:

f(x, y) = x+y+Π∙v(x, y); g(x, y) = −x+y+Π∙w(x, y);

здесь

Π =
∏

p∈P

p
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Ортогональные лат. квадраты

Два лат. квадрата порядка P наз. ортогональными
⇐⇒ при наложении их друг на друга каждая из P 2

упоряд. пар символов встречается ровно 1 раз.

Если {fi(x, y)}Ni=1 совместимые попарно
ортогональные лат. квадраты порядка
P = 3 ∙ 5 ∙ ∙ ∙ p (нек-рые сомн-тели могут
отсутствовать), и vi(x, y) ∈ Z[x, y], то
{fi(x, y) + hi(x, y) + P ∙ vi(x, y)}Ni=1 —
попарно ортогональные лат. квадраты
порядка 3k ∙ 5` ∙ ∙ ∙ pr.
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Это реклама!!!

Обо всех этих (и многих других) приложениях
неархимедовой динамики можно прочитать в книжке

Applied Algebraic Dynamics,
by Vladimir Anashin and Andrei Khrennikov

Publisher: W. de Gruyter, Berlin—N.Y.
2009 (должна выйти в мае).
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