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1 Тензоры
Везде в курсе подразумевается, что все функции достаточно гладкие, а все необходи-

мые для вычислений теоремы существования и единственности выполнены.
Закон преобразования тензора типа (𝑛,𝑚) при замене координат 𝑥𝑀 → 𝑥𝑀

′

𝑇𝑀 ′
1...𝑀

′
𝑛
𝐾′

1...𝐾
′
𝑚

(𝑥′) = 𝑇𝑀1...𝑀𝑛
𝐾1...𝐾𝑚(𝑥(𝑥′))

𝜕𝑥𝑀
′
1

𝜕𝑥𝑀1
(𝑥(𝑥′)) . . .

𝜕𝑥𝑀
′
𝑛

𝜕𝑥𝑀𝑛
(𝑥(𝑥′))

𝜕𝑥𝐾1

𝜕𝑥𝐾
′
1
(𝑥′) . . .

𝜕𝑥𝐾𝑚

𝜕𝑥𝐾′
𝑚

(𝑥′).

При указании типа тензора кроме валентности (число верхних и нижних индексов) сле-
дует указывать класс преобразований координат, по отношению к которым объект ведёт
себя как тензор.

Появление в одном члене двух одноимённых индексов подразумевает суммирование
(свёртку) по всему диапазону изменения индекса. Такие индексы называются немыми.
Один из индексов такой пары должен быть верхним, а другой — нижним. В декартовых
координатах можно не различать верхние и нижние индексы.

Индекс, который в каждом члене выражения встречается ровно один раз называется
свободным. Свободный индекс во всех членах должен быть в одном (верхнем или нижнем)
положении. Свободный индекс (одновременно во всех членах) можно заменять конкрет-
ным значением.

Если в каком-то члене одноимённый индекс встретился более двух раз, то в выражении
допущена ошибка.

Если аргумент функции или функционала несёт индексы, то подразумевается, что
функция зависит от всех компонент, например, пусть 𝛼, 𝛽 = 1, . . . , 𝑑, а 𝛼′𝛽′ = 1′, . . . , 𝑑′,
тогда

𝑓(𝑥𝛼) ≡ 𝑓(𝑥𝛽) ≡ 𝑓(𝑥1, 𝑥2, . . . , 𝑥𝑑) ≡ 𝑓(𝑥) ̸= 𝑓(𝑥𝛼
′
) ≡ 𝑓(𝑥𝛽

′
) ≡ 𝑓(𝑥1

′
, 𝑥2

′
, . . . , 𝑥𝑑

′
) ≡ 𝑓(𝑥′)

Роль индекса у аргумента — показать число компонент и (если аргумент тензор) валент-
ность тензора, к какой системе координат относится индекс. Имя индекса у аргумента при
этом не важно.

Далее по повторяющим индексам везде подразумевается суммирование, если явно не
оговорено обратное.

Для 3-мерного евклидового пространства в декартовых координатах

𝑒𝛼𝛽𝛾 = −𝑒𝛼𝛾𝛽 = −𝑒𝛽𝛾𝛼 = −𝑒𝛾𝛽𝛼, 𝑒123 = 𝑒𝑥𝑦𝑧 = +1.

𝑒𝛼𝛽𝛾𝑒𝜇𝛽𝛾 = 2𝛿𝛼𝜇, 𝑒𝛼𝛽𝛾𝑒𝜇𝜈𝛾 = 𝛿𝛼𝜇𝛿𝛽𝜈 − 𝛿𝛼𝜈𝛿𝛽𝜇.

(a,b) = 𝑎𝛼𝑏𝛼, [a× b]𝛾 = 𝑒𝛼𝛽𝛾𝑎𝛼𝑏𝛽.

∇𝛼 = 𝜕𝛼 =
𝜕

𝜕𝑥𝛼
, ∇𝛼𝑥𝛽 = ∇𝛼𝑟𝛽 = 𝛿𝛼𝛽, div a = (∇, a) = ∇𝛼𝑎𝛼, rot a = [∇×a], (rot a)𝛾 = 𝑒𝛼𝛽𝛾∇𝛼𝑎𝛽.

grad𝜙 = ∇𝜙, (grad𝜙)𝛼 = ∇𝛼𝜙, (∇,∇) = ∇𝛼∇𝛼 =
𝜕2

𝜕𝑥𝛼𝜕𝑥𝛼
= △.
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2 Лагранжев формализм
Действие — функционал от траектории системы 𝑥𝛼(𝑡) в конфигурационном простран-

стве:

𝑆[𝑥𝛼(𝑡)] =

𝑡1∫︁
𝑡0

𝐿(𝑥𝛼, 𝑥̇𝛼, 𝑡) 𝑑𝑡

Функция Ларганжа 𝐿(𝑥, 𝑥̇, 𝑡) часто (но не всегда) в классической механике — разность
кинетической и потенциальной энергий.

Вариациая действия — функционал от траектории системы 𝑥𝛼(𝑡) и вариации траекто-
рии 𝛿𝑥𝛼(𝑡) с граничными условиями 𝛿𝑥𝛼(𝑡0,1) = 0:

𝛿𝑆[𝑥𝛼(𝑡), 𝛿𝑥𝛼(𝑡)] =
𝑑

𝑑𝜀
𝑆[𝑥𝛼(𝑡) + 𝜀 𝛿𝑥𝛼(𝑡)]

⃒⃒⃒⃒
𝜀=0

= 𝑆[𝑥𝛼(𝑡) + 𝛿𝑥𝛼(𝑡)] − 𝑆[𝑥𝛼(𝑡)] + 𝑜(𝛿𝑥).

𝛿𝑆 =

𝑡1∫︁
𝑡0

(︂
𝜕𝐿

𝜕𝑥𝛼
𝛿𝑥𝛼 +

𝜕𝐿

𝜕𝑥̇𝛼
𝛿𝑥̇𝛼
)︂
𝑑𝑡 =

𝜕𝐿

𝜕𝑥̇𝛼
𝛿𝑥𝛼
⃒⃒⃒⃒𝑡1
𝑡0⏟  ⏞  

0

+

𝑡1∫︁
𝑡0

(︂
𝜕𝐿

𝜕𝑥𝛼
− 𝑑

𝑑𝑡

𝜕𝐿

𝜕𝑥̇𝛼

)︂
⏟  ⏞  

𝛿𝑆
𝛿𝑥𝛼(𝑡)

𝛿𝑥𝛼 𝑑𝑡.

Выражение в скобках в последнем интеграле называется вариационной производной. Усло-
вие экстремальности действия — условие, что 𝛿𝑆 = 0 для произвольной вариации 𝛿𝑥𝛼(𝑡)
(при условии 𝛿𝑥𝛼(𝑡0,1) = 0) требует обращения вариационной производной в нуль. Это
даёт нам уравнения движения в форме уравнений Эйлера-Лагранжа:

𝛿𝑆

𝛿𝑥𝛼(𝑡)
≡ 𝜕𝐿

𝜕𝑥𝛼
− 𝑑

𝑑𝑡

𝜕𝐿

𝜕𝑥̇𝛼
= 0.

Также через функцию Лагранжа 𝐿 определяются обобщённые импульсы 𝑝𝛼 = 𝜕𝐿
𝜕𝑥̇𝛼 (ком-

поненты ковектора), обобщённые силы 𝐹𝛼 = 𝜕𝐿
𝜕𝑥𝛼 (компоненты ковектора только для ли-

нейных преобразований), энергия ℰ = 𝑥̇𝛼𝑝𝛼 − 𝐿 (скаляр).
Пусть имеется некоторая замена обобщённых координат и времени, непрерывно зави-

сящая от параметра 𝑠:
𝑡′ = 𝑇 (𝑥𝛼, 𝑡, 𝑠), 𝑥′𝛼 = 𝑋𝛼(𝑥𝛼, 𝑡, 𝑠),

причём эта замена оставляет неизменным действие, или (что эквивалентно) подынтеграль-
ное выражение в действии (включая 𝑑𝑡!)

𝐿(𝑥𝛼, 𝑥̇𝛼, 𝑡) 𝑑𝑡 = 𝐿(𝑥′𝛼, 𝑥̇′𝛼, 𝑡′) 𝑑𝑡′.

Такая замена называется симметрией действия. Согласно теореме Э.Нётер, симметрии
действия соответствует закон сохранения некоторой величины 𝑝𝑠

𝑑𝑝𝑠
𝑑𝑡

= 0, 𝑝𝑠 =

(︂
𝑝𝛼
𝜕𝑋𝛼

𝜕𝑠
− ℰ 𝜕𝑇

𝜕𝑠

)︂
𝑠=0

.

3 Гамильтонов формализм
Если выполняется условие

det

(︂
𝜕𝑝𝛼
𝜕𝑥̇𝛽

)︂
≡ det

(︂
𝜕2𝐿

𝜕𝑥̇𝛼𝜕𝑥̇𝛽

)︂
̸= 0,

то функция Лагранжа называется невырожденной. В этом случае локально обобщённые
скорости 𝑥̇𝛼 могут быть выражены через обобщённые импульсы

𝑥̇𝛼 = 𝑉 𝛼(𝑥𝛼, 𝑝𝛼, 𝑡)

2



и с помощью преобразования Лежандра по функции Лагранжа может быть построена
функция Гамильтона — энергия как функция обобщённых координат, обобщённых им-
пульсов и времени:

𝐻(𝑥𝛼, 𝑝𝛼, 𝑡) = 𝑝𝛽 𝑉
𝛽(𝑥𝛼, 𝑝𝛼, 𝑡) − 𝐿(𝑥𝛼, 𝑉 𝛼(𝑥𝛼, 𝑝𝛼, 𝑡), 𝑡).

Функция Гамильтона позволяет записать уравнения динамики как уравнения перво-
го порядка — уравнения Гамильтона, которые в канонических переменных (обобщённых
координатах и импульсах) имеют вид

𝑥̇𝛼 =
𝜕𝐻

𝜕𝑝𝛼
, 𝑝̇𝛼 = − 𝜕𝐻

𝜕𝑥𝛼
.

Переход от функции Гамильтона к функции Лагранжа выполняется аналогично. Усло-
вие того, что обобщённые импульсы могут быть выражены через обобщённые скорости как
𝑝𝛼 = 𝑃𝛼(𝑥𝛼, 𝑥̇𝛼, 𝑡) (условие невырожденности функции Гамильтона)

det

(︂
𝜕𝑥̇𝛼

𝜕𝑝𝛽

)︂
≡ det

(︂
𝜕2𝐻

𝜕𝑝𝛼𝜕𝑝𝛽

)︂
̸= 0,

𝐿(𝑥𝛼, 𝑥̇𝛼, 𝑡) = 𝑥̇𝛽𝑃𝛽(𝑥𝛼, 𝑥̇𝛼, 𝑡) −𝐻(𝑥𝛼, 𝑃𝛼(𝑥𝛼, 𝑥̇𝛼, 𝑡), 𝑡)

Функция от обобщённый координат, обобщённых импульсов и времени называется на-
блюдаемой величиной или просто наблюдаемой 𝐹 (𝑥𝛼, 𝑝𝛼, 𝑡). Для пары наблюдаемых 𝐹,𝐺
определяется скобка Пуассона, которая в канонических переменных имеет вид

{𝐹,𝐺} =
𝜕𝐹

𝜕𝑥𝛼
𝜕𝐺

𝜕𝑝𝛼
− 𝜕𝐹

𝜕𝑝𝛼

𝜕𝐺

𝜕𝑥𝛼
=
∑︁
𝛼

(︂
𝜕𝐹

𝜕𝑥𝛼
𝜕𝐺

𝜕𝑝𝛼
− 𝜕𝐹

𝜕𝑝𝛼

𝜕𝐺

𝜕𝑥𝛼

)︂
.

Для канонических переменных (необходимое и достаточное условие каноничности)

{𝑥𝛼, 𝑝𝛽} = 𝛿𝛼𝛽 , {𝑥𝛼, 𝑥𝛽} = {𝑝𝛼, 𝑝𝛽} = 0.

Для произвольной наблюдаемой 𝐹 = 𝐹 (𝑥, 𝑝, 𝑡) и функции Гамильтона 𝐻(𝑥, 𝑝, 𝑡)

𝑑𝐹

𝑑𝑡
=
𝜕𝐹

𝜕𝑡
+ {𝐹,𝐻}.

4 Уравнение Гамильтона-Якоби
В уравнении Гамильтона-Якоби действие является не функционалом, а функцией от

конечного момента времени и конечной точки траектории, при этом траектория удовле-
творяет уравнениям Эйлера Лагранжа

𝑆(𝑡1, 𝑥
𝛼
1 ) =

𝑡1∫︁
𝐿(𝑥, 𝑥̇, 𝑡) 𝑑𝑡, 𝑥𝛼(𝑡1) = 𝑥𝛼1 ,

𝛿𝑆

𝛿𝑥𝛼(𝑡)
≡ 𝜕𝐿

𝜕𝑥𝛼
− 𝑑

𝑑𝑡

𝜕𝐿

𝜕𝑥̇𝛼
= 0.

Производные от действия по конечной точке оказываются связанными с импульсами и
энергией

𝜕𝑆(𝑡, 𝑥)

𝜕𝑡
= −ℰ , 𝜕𝑆(𝑡, 𝑥)

𝜕𝑥𝛼
= 𝑝𝛼.

Поскольку энергия выражается через импульсы с помощью функции Гамильтона получа-
ем дифферениальное уравнение на функцию 𝑆(𝑡, 𝑥) — уравнение Гамильтона-Якоби

ℰ = 𝐻(𝑥, 𝑝, 𝑡) ⇒ 𝜕𝑆

𝜕𝑡
+𝐻

(︂
𝑥𝛼,

𝜕𝑆

𝜕𝑥𝛼
, 𝑡

)︂
= 0.
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Если вам повезло найти полный интеграл уравнения Гамильтона-Якоби, т.е. его реше-
ние 𝑆(𝑡, 𝑥𝛼, 𝑎𝛼) с параметрами 𝑎𝛼, число которых равно числу степеней свободы, причём

det

(︂
𝜕𝑝𝛼
𝜕𝑎𝛽

)︂
= det

(︂
𝜕2𝑆

𝜕𝑥𝛼𝜕𝑎𝛽

)︂
̸= 0,

то следующие величины будут сохраняться (не зависеть от времени): 𝑎𝛼, 𝜕𝑆
𝜕𝑎𝛼

. Этого до-
статочно для решения уравнений динамики исходной гамильтоновой системы.

5 Движение твёрдого тела и неинерциальные системы
отсчёта

Скорость вращения вокруг начала координат с угловой скоростью Ω: v = [Ω× r].
Момент инерции

𝐼𝛼𝛽 =
∑︁
𝑎

𝑚𝑎

(︀
𝑟2𝑎𝛿𝛼𝛽 − 𝑥𝑎𝛼𝑥𝑎𝛽

)︀
=

⎛⎝ ∑︀
𝑚(𝑦2 + 𝑧2) −

∑︀
𝑚𝑥𝑦 −

∑︀
𝑚𝑥𝑧

−
∑︀
𝑚𝑦𝑥

∑︀
𝑚(𝑥2 + 𝑧2) −

∑︀
𝑚𝑦𝑧

−
∑︀
𝑚𝑧𝑥 −

∑︀
𝑚𝑧𝑦

∑︀
𝑚(𝑥2 + 𝑦2)

⎞⎠ .

Момент инерции относительно оси n

𝐼n = 𝐼𝛼𝛽𝑛
𝛼𝑛𝛽 =

∫︁ (︀
𝑟2 − (r,n)2

)︀
𝑑𝑚 =

∫︁
𝑟2⊥ 𝑑𝑚, r⊥ = r− n(n, r).

Момент импульса и момент силы

L =
∑︁
𝑎

[r𝑎 × p𝑎], 𝐿𝛼 = 𝐼𝛼𝛽Ω𝛽. L̇ ≡ 𝑑L

𝑑𝑡
= K ≡

∑︁
𝑎

[r𝑎 × F𝑎].

Энергия вращения

ℰвр. =
1

2
𝐼𝛼𝛽Ω𝛼Ω𝛽 =

1

2
(Ω,L) =

1

2
(𝐼−1)𝛼𝛽𝐿𝛼𝐿𝛽.

Углы Эйлера (как в теоретической физике)

e𝑥

e𝑦N

e3

e2

e1

e𝑧

Переход от неподвижной системе к подвижной определяется следующим образом:
* Поворот вокруг e𝑧 на угол 𝜙 (угол прецессии) совмещает ось 𝑦′ с линией узлов N.
* Поворот вокруг N на угол 𝜃 (угол нутации) совмещает ось 𝑧′ с осью 𝑥3.
* Поворот вокруг e3 на угол 𝜓 (угол собственного вращения) совмещает оси 𝑥′′ и 𝑦′′ с 𝑥1
и 𝑥2.

N = sin𝜙 e𝑥 + cos𝜙 e𝑦

e3 = cos 𝜃 e𝑧 + sin 𝜃(cos𝜙 e𝑥 − sin𝜙 e𝑦)

Вектор угловой скорости твёрдого тела имеет компоненты (𝜙̇, 𝜃, 𝜓̇) если его разложить по
векторам e𝑧,N, e3. получаем

𝜔 = 𝜙̇ e𝑧 + 𝜃N + 𝜓̇ e3.
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Введём неинерциальную систему отсчёта, начало отсчёта которой задаётся радиус-
вектором R(𝑡) и движется со скоростью V(𝑡) = Ṙ(𝑡) и ускорением W(𝑡) = V̇(𝑡). Также
неинерциальная система вращается с угловой скоростью Ω(𝑡). Производные от R, V и Ω
мы определим по отношению к невращающейся системе отсчёта, но разлагать их будем по
вращающемуся базису. Векторы с двумя штрихами относятся к неинерциальной системе.
Силы инерции, действующие на частицу имеют вид

Fинерц. = −𝑚W′′ −𝑚[Ω̇′′ × r′′] +𝑚[Ω′′ × [r′′ ×Ω′′]] + 2𝑚[v′′ ×Ω′′].

Эти четыре члена называются соответственно: сила инерции поступательного движения,
сила инерции вращения, центробежная сила, сила Кориолиса.

6 Специальная теория относительности
Здесь и далее при употреблении двойных знаков ±,∓ верхний знак соответствует со-

глашениям принятым в лекциях и конспекте, а нижный — 2-му тому курса теоретической
физики Ландау и Лифшица.

Пространство-время Минковского — 4-мерное пространство (время 𝑥0 = 𝑐𝑡 и 3 про-
странственных координаты 𝑥1 = 𝑥, 𝑥2 = 𝑦, 𝑥3 = 𝑧), в котором введёна метрика Минков-
ского

𝑔𝑖𝑗 = ±

⎛⎜⎜⎝
−1 0 0 0
0 +1 0 0
0 0 +1 0
0 0 0 +1

⎞⎟⎟⎠ = 𝑔𝑖𝑗.

Метрика Минковского переходит в себя при сдвигах, отражениях, поворотах простран-
ственных координат, преобразованиях Лоренца (бустах) и их комбинациях.

Преобразование Лоренца от условно неподвижной (нештрихованной) системы к систе-
ме движущейся со скоростью v = (𝑣, 0, 0) (штрихованной) имеет вид (обратная матрица
отличается знаком скорости)

𝑥𝑖
′
=
𝜕𝑥𝑖

′

𝜕𝑥𝑖
𝑥𝑖,

𝜕𝑥𝑖
′

𝜕𝑥𝑖
= Λ𝑥,𝑣

𝑖′

𝑖 =

⎛⎜⎜⎝
𝛾 −𝛾𝑣/𝑐 0 0

−𝛾𝑣/𝑐 𝛾 0 0
0 0 1 0
0 0 0 1

⎞⎟⎟⎠ , 𝛾 =
1√︀

1 − 𝑣2/𝑐2
.

Удобно параметризовать преобразования Лоренца через быстроту 𝜃:

𝑣 = 𝑐 th 𝜃, 𝛾 = ch 𝜃, 𝛾𝑣/𝑐 = sh 𝜃.

При преобразованиях Лоренца в одном направлении быстро́ты (в отличие от скоростей)
складываются.

С помощью метрики Минковского определяются аналог расстояния — интервал 𝑠 и
собственное время вдоль мировой линии 𝜏

𝑑𝑠2 = 𝑔𝑖𝑗 𝑑𝑥
𝑖 𝑑𝑥𝑗 = ±(−𝑐 𝑑𝑡2 + 𝑑𝑥2 + 𝑑𝑦2 + 𝑑𝑧2) = ∓𝑐2 𝑑𝜏 2.

Метрика и обратная метрика 𝑔𝑖𝑗 (𝑔𝑖𝑗𝑔𝑗𝑘 = 𝛿𝑖𝑘) позволяет поднимать и опускать индексы и
определить скалярное произведение 4-мерных векторов.

𝑎𝑖 = 𝑔𝑖𝑗𝑎
𝑗, 𝑏𝑖 = 𝑔𝑖𝑗𝑏𝑗, 𝐹 𝑖

𝑗 = 𝐹𝑘𝑗𝑔
𝑖𝑘 = 𝐹 𝑖𝑘𝑔𝑘𝑗, (𝑎, 𝑏) = 𝑎𝑖𝑏𝑖 = 𝑎𝑖𝑏

𝑖 = 𝑔𝑖𝑗𝑎
𝑖𝑏𝑗 = 𝑔𝑖𝑗𝑎𝑖𝑏𝑗.

4-мерный вектор можно записывать через компоненты, причём пространственные компо-
ненты часто объединют в 4-мерный вектор

𝐴𝑖 = (𝐴0;𝐴1;𝐴2;𝐴3⏟  ⏞  
A=𝐴𝛼

) = (𝐴0;A) = (𝐴0;𝐴𝛼), 𝐴𝑖𝐵𝑖 = 𝐴0𝐵0+𝐴
1𝐵1+𝐴

2𝐵2+𝐴
3𝐵3 = ±(−𝐴0𝐵0+(AB)).
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Для безмассовой частицы 𝜏 = 0 и соответствующие 4-мерные величины не определены.
Кинематические 4-мерные величины определяются с помощью дифференцирования

по собственному времени частицы:
𝑢𝑖 = 𝑑𝑥𝑖

𝑑𝜏
= (𝛾𝑐; 𝛾v) — 4-скорость, 𝑢𝑖𝑢𝑖 = ∓𝑐2,

𝑤𝑖 = 𝑑2𝑥𝑖

𝑑𝜏2
= (𝛾4(v,w)/𝑐; 𝛾4(v,w)v/𝑐2 + 𝛾2w) — 4-ускорение, 𝑤𝑖𝑢𝑖 = 0

𝑝𝑖 = 𝑚𝑢𝑖 = (ℰ/𝑐,p) — 4-импульс (определён и для безмассовой частицы, для которой 𝑢𝑖

не определена!), ∓𝑝𝑖𝑝𝑖 = ℰ2/𝑐2 − p2 = 𝑚2𝑐2 (позволяет вычислить эффективную массы
системы и функцию Гамильтона свободной частицы),
𝑓 𝑖 = 𝑑𝑝𝑖

𝑑𝜏
— 4-сила,

𝑚 — масса не зависит от системы отсчёта, связана с энергией в системе центра инерции
𝐸0 = 𝑚𝑐2,
𝐿𝑖𝑗 = 𝑥𝑖𝑝𝑗 − 𝑥𝑗𝑝𝑖 — 4-мерный момент импульса.

В качестве коэффициента пропорциональности между 3-мерной скоростью и 3-мерным
импульсом выступает не масса, а энергия: p = ℰv/𝑐2.

Для всех 4-мерных величин мы используем единицы измерения, соответствующие еди-
ницам измерения соответствующих 3-мерных величин. Это позволяет класть 𝑐 = 1, а
потом восстанавливать 𝑐 из соображений размерности.

7 Электромагнитное поле
4-потенциал 𝐴𝑖 = (𝜙;A), 𝜙 — скалярный потенциал, A — векторный потенциал.

E = −grad𝜙− 1

𝑐

𝜕A

𝜕𝑡
, H = rotA.

При калибровочном (градиентном) преобразовании потенциалов

𝜙→ 𝜙′ = 𝜙− 1

𝑐

𝜕𝑓

𝜕𝑡
, A → A′ = A + ∇𝑓 ⇔ 𝐴𝑖 → 𝐴′

𝑖 = 𝐴𝑖 ±∇𝑖𝑓

поля E и H не меняются.
Тензор электромагнитного поля

𝐹𝑖𝑗 = 𝜕𝑖𝐴𝑗 − 𝜕𝑗𝐴𝑖 =
𝜕𝐴𝑗

𝜕𝑥𝑖
− 𝜕𝐴𝑖

𝜕𝑥𝑗
, 𝐴𝑖 = ±(−𝜙;A),

𝐹𝑖𝑗 = ±

⎛⎜⎜⎝
0 −𝐸𝑥 −𝐸𝑦 −𝐸𝑧

𝐸𝑥 0 𝐻𝑧 −𝐻𝑦

𝐸𝑦 −𝐻𝑧 0 𝐻𝑥

𝐸𝑧 𝐻𝑦 −𝐻𝑥 0

⎞⎟⎟⎠ , 𝐹 𝑖
𝑗 =

⎛⎜⎜⎝
0 𝐸𝑥 𝐸𝑦 𝐸𝑧

𝐸𝑥 0 𝐻𝑧 −𝐻𝑦

𝐸𝑦 −𝐻𝑧 0 𝐻𝑥

𝐸𝑧 𝐻𝑦 −𝐻𝑥 0

⎞⎟⎟⎠
Дуальный тензор электромагнитного поля:

̃︀𝐹𝑖𝑘 = 1
2
𝑒𝑖𝑘𝑙𝑚𝐹

𝑙𝑚 , 𝑒0123 = −𝑒0123 = 1.

Инварианты электромагнитного поля:

𝐹 𝑖𝑘𝐹𝑖𝑘 = 2(H2 − E2) , 𝐹 𝑖𝑘 ̃︀𝐹𝑖𝑘 = 4(EH).

4-понециал и тензор электромагнитного поля преобразуются при замене координат так,
как полагается тензорам соответствующей валентности. В частности при преобразовании
Лоренца со скоростью (𝑣, 0, 0) получаем

𝐹𝑖′𝑗′ = 𝐹𝑖𝑗
𝜕𝑥𝑖

𝜕𝑥𝑖′
𝜕𝑥𝑗

𝜕𝑥𝑗′
,
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𝐸 ′
𝑥 = 𝐸𝑥, 𝐸 ′

𝑦 = 𝛾(𝐸𝑦 −
𝑣

𝑐
𝐻𝑧), 𝐸 ′

𝑧 = 𝛾(𝐸𝑧 +
𝑣

𝑐
𝐻𝑦),

𝐻 ′
𝑥 = 𝐻𝑥, 𝐻 ′

𝑦 = 𝛾(𝐻𝑦 +
𝑣

𝑐
𝐸𝑧), 𝐻 ′

𝑧 = 𝛾(𝐻𝑧 −
𝑣

𝑐
𝐸𝑦).

Уравнение движения заряженной частицы (импульс не обобщённый, а кинематиче-
ский: p = ℰv/𝑐2, в нерелятивистском пределе p = 𝑚v)

𝑑p

𝑑𝑡
= 𝑞E +

𝑞

𝑐
[v ×H]

В 4-мерном виде
𝑚𝑤𝑖 =

𝑞

𝑐
𝐹 𝑖

𝑗𝑢
𝑗.

Для релятивистской частицы во внешнем электромагнитном поле в 4-мерной записи
(𝑙 — произвольный монотонный параметр вместо времени) действие имеет вид

𝑆[𝑥𝑖(𝑙)] =

𝑡1∫︁
𝑡0

(︃
−𝑚𝑐2

√︂
∓𝑔𝑖𝑗

𝑑𝑥𝑖

𝑑𝑙

𝑑𝑥𝑗

𝑑𝑙
± 𝑞

𝑐
𝐴𝑖(𝑥)

𝑑𝑥𝑖

𝑑𝑙

)︃
𝑑𝑙

Действие для нерелятивистской и релятивистской частицы во внешнем электромаг-
нитном поле

𝑆[r(𝑡)] =

𝑡1∫︁
𝑡0

(︂
𝑚ṙ2

2
− 𝑞𝜙(r, 𝑡) +

𝑞

𝑐
(ṙ,A(r, 𝑡))

)︂
𝑑𝑡, 𝑆[r(𝑡)] =

𝑡1∫︁
𝑡0

(︁
−𝑚𝑐2

√︀
1 − ṙ2/𝑐2−𝑞𝜙(r, 𝑡)+

𝑞

𝑐
(ṙ,A(r, 𝑡))

)︁
𝑑𝑡.

Обобщённый импульс P отличается от кинематического на векторный потенциал

P = p+
𝑞

𝑐
A(r, 𝑡), p = 𝑚v (нерелятивистский случай), p = ℰv/𝑐2 (релятивистский случай).

Функции Гамильтона имеют вид который очевиден, если помнить, что выражение P −
𝑞
𝑐
A(r, 𝑡) — это просто кинематический импульс

𝐻(r,P, 𝑡) =
(P− 𝑞

𝑐
A(r, 𝑡))2

2𝑚⏟  ⏞  
кинетическая энергия 𝑚𝑣2

2

+𝑞𝜙(r, 𝑡), 𝐻(r,P, 𝑡) =

√︂
𝑚2𝑐4 + 𝑐2

(︁
P− 𝑞

𝑐
A(r, 𝑡)

)︁2
+𝑞𝜙(r, 𝑡).

Из параметризации полей через потенциалы следуют следующие тождества{︂
divH = 0,
rotE = −1

𝑐
𝜕H
𝜕𝑡

⇔ 𝜕𝑖𝐹𝑗𝑘 + 𝜕𝑗𝐹𝑘𝑖 + 𝜕𝑘𝐹𝑖𝑗 = 0

— 1-я пара уравнений Максвелла.
2-я пара уравнений Максвелла{︂

divE = 4𝜋𝜌,
rotH = 1

𝑐
𝜕E
𝜕𝑡

+ 4𝜋
𝑐
j

⇔ ∇𝑘𝐹
𝑖𝑘 = ±4𝜋

𝑐
𝑗𝑖, 𝑗𝑖 = (𝑐𝜌; j)

получается вариацией действия для электромагнитного поля

𝑆[𝐴𝑖(𝑥)] =

∫︁ (︂
−𝐹

𝑖𝑗𝐹𝑖𝑗

16𝜋𝑐
± 1

𝑐2
𝑗𝑖(𝑥)𝐴𝑖(𝑥)

)︂
𝑑4𝑥.

Член, описывающий взаимодействия поля с частицами здесь записан через 4-мерную плот-
ность тока 𝑗𝑖 = (𝑐𝜌; j), здесь 𝜌 — объёмная плотность заряда, j — 3-мерная плотность тока

±
∑︁
𝑎

𝑒𝑎
𝑐

∫︁
𝐴𝑖(𝑋𝑎(𝑙𝑎))

𝑑𝑋 𝑖
𝑎

𝑑𝑙𝑎
𝑑𝑙𝑎 = ± 1

𝑐2

∫︁
𝑈

𝐴𝑖(𝑥)𝑗𝑖(𝑥) 𝑑4𝑥.
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Уравнение непрерывности:
𝜕𝑗𝑖

𝜕𝑥𝑖
=
𝜕𝜌

𝜕𝑡
+ div j = 0.

Микроскопические плотности заряда и тока

𝜌(r, 𝑡) =
∑︁
𝑎

𝑒𝑎𝛿
3 (r− r𝑎(𝑡)) , j(r, 𝑡) =

∑︁
𝑎

𝑒𝑎v(𝑡)𝛿3 (r− r𝑎(𝑡)) .

8 Преобразование Фурье
Функция одной переменной:

𝑓(𝜔) = 𝐹 [𝑓 ](𝜔) =

∫︁
ei𝜔𝑡√

2𝜋
𝑓(𝑡) 𝑑𝑡, 𝑓(𝑡) =

∫︁
e−i𝜔𝑡

√
2𝜋

𝑓(𝜔) 𝑑𝜔,

Функция на пространстве Минковского

𝐴𝑖(𝑘𝑗) =

∫︁
e∓i𝑥𝑗𝑘𝑗

(2𝜋)2
𝐴𝑖(𝑥

𝑘) 𝑑4𝑥, 𝐴𝑖(𝑥
𝑗) =

∫︁
e±i𝑥𝑗𝑘𝑗

(2𝜋)2
𝐴𝑖(𝑘𝑘) 𝑑4𝑘.

Здесь 𝑘𝑗 = (𝜔
𝑐
;k) — 4-мерный волновой вектор, 𝑥𝑗 = (𝑐𝑡; r) — 4-мерный радиус-вектор,

𝑥𝑗𝑘𝑗 = ±(kr− 𝜔𝑡) — их скалярное произведение.

9 Дельта-функция

𝑏∫︁
𝑎

𝑓(𝑥)𝛿(𝑥− 𝑥0) 𝑑𝑥 =

{︂
𝑓(𝑥0) , 𝑎 < 𝑥0 < 𝑏 ,

0 , 𝑥0 < 𝑎 , 𝑥0 > 𝑏 ;

𝛿(𝛼𝑥) =
𝛿(𝑥)

|𝛼|
, 𝛿(𝑓(𝑥)) =

∑︁
𝑛

𝛿(𝑥− 𝑥𝑛)

|𝑓 ′(𝑥𝑛)|
, 𝑓(𝑥𝑛) = 0,

𝛿(𝑥) =

+∞∫︁
−∞

𝑒𝑖𝑘𝑥
𝑑𝑘

2𝜋
.

Формула Сохотского: lim
𝛿→+0

1
𝑥−𝑖𝛿

= 𝒫 1
𝑥

+ 𝑖𝜋𝛿(𝑥) .

𝛿3(r) = 𝛿(𝑥) 𝛿(𝑦) 𝛿(𝑧), 𝛿4(𝑥) = 𝛿(𝑐𝑡) 𝛿(𝑥) 𝛿(𝑦) 𝛿(𝑧).

10 Электро- и магнито-статика
Дипольный момент системы зарядов:

электрический d =
∑︁
𝑎

𝑒𝑎r𝑎 ,

магнитный 𝜇 =
1

2𝑐

∑︁
𝑎

𝑒𝑎[r𝑎 × v𝑎] .

Тензор квадрупольного момента

𝑄𝛼𝛽 =
∑︁
𝑎

𝑒𝑎
(︀
3𝑥𝑎𝛼𝑥𝑎𝛽 − (r𝑎)

2𝛿𝛼𝛽
)︀
.
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Разложение потенциалов по мультипольным моментам (n = r
𝑟
)

𝜙 =
𝑒

𝑟
+

(d,n)

𝑟2
+
𝑄𝛼𝛽𝑛𝛼𝑛𝛽

2𝑟3
+ · · · .

Поле магнитного диполя (черта — усреднение по времени)

Ā =
[𝜇̄× r]

𝑟3
, H̄ =

3(𝜇̄,n)n− 𝜇̄

𝑟3
.

Система зарядов во внешнем поле

𝑈e = 𝑒𝜙− (d,E) +
1

6

𝜕2𝜙

𝜕𝑥𝛼𝜕𝑥𝛽
𝑄𝛼𝛽 + · · · ;

𝑈̄m = −(𝜇̄,H) , F̄ = (𝜇̄,∇)H , M̄F = [𝜇̄×H] .

11 Волновые уравнения

−2𝐴𝑖 ≡ 1

𝑐2
𝜕2𝐴𝑖

𝜕𝑡2
− ∆𝐴𝑖 =

4𝜋

𝑐
𝑗𝑖 .

Калибровка Лоренца:
𝜕𝐴𝑖

𝜕𝑥𝑖
=

1

𝑐

𝜕𝜙

𝜕𝑡
+ divA = 0 .

Запаздывающие потенциалы:

𝜙(r, 𝑡) =
y 𝜌

(︁
r ′, 𝑡− |r−r ′|

𝑐

)︁
|r− r ′|

𝑑3r ′ ;

A(r, 𝑡) =
1

𝑐

y j
(︁
r ′, 𝑡− |r−r ′|

𝑐

)︁
|r− r ′|

𝑑3r ′ .

Плотность 𝑊 и поток S энергии электромагнитного поля

𝑊 =
E2 + H2

8𝜋
, S =

𝑐

4𝜋
[E×H] .

Плотность импульса g и тензор напряжений 𝜎𝛼𝛽 электромагнитного поля

g =
1

4𝜋𝑐
[E×H] =

S

𝑐2
, 𝜎𝛼𝛽 = 𝑊𝛿𝛼𝛽 −

𝐸𝛼𝐸𝛽 +𝐻𝛼𝐻𝛽

4𝜋
.

Тензор энергии-импульса электромагнитного поля

𝑇 𝑖𝑘 = ∓ 1

4𝜋

(︂
1

4
g𝑖𝑘𝐹𝑙𝑚𝐹

𝑙𝑚 − 𝐹 𝑖𝑙𝐹 𝑘
𝑙

)︂
;

𝑇 𝑖𝑘 =

⎛⎜⎜⎝
𝑊 𝑆𝑥/𝑐 𝑆𝑦/𝑐 𝑆𝑧/𝑐
𝑆𝑥/𝑐 𝜎𝑥𝑥 𝜎𝑥𝑦 𝜎𝑥𝑧
𝑆𝑦/𝑐 𝜎𝑦𝑥 𝜎𝑦𝑦 𝜎𝑦𝑧
𝑆𝑧/𝑐 𝜎𝑧𝑥 𝜎𝑧𝑦 𝜎𝑧𝑧

⎞⎟⎟⎠ =

(︂
𝑊 S/𝑐
S/𝑐 𝜎𝛼𝛽

)︂
.

Баланс энергии-импульса электромагнитного поля

𝜕𝑇 𝑖𝑘

𝜕𝑥𝑘
+

1

𝑐
𝐹 𝑖𝑘𝑗𝑘 = 0 ⇔

{︃
𝜕𝑊
𝜕𝑡

+ divS + (j,E) = 0,
𝜕g𝛼
𝜕𝑡

+
𝜕𝜎𝛼𝛽

𝜕𝑥𝛽
+ 𝜌𝐸𝛼 + 1

𝑐
[j×H]𝛼 = 0.
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12 Плоская монохроматическая волна

E(r, 𝑡) = Re
{︀
E0e

i(kr−𝜔𝑡)
}︀

= Re
{︀
E0e

±i𝑘𝑚𝑥𝑚
}︀

= (ReE0) cos(𝜔𝑡− kr) + (ImE0) sin(𝜔𝑡− kr).

𝑘𝑚 = (𝜔/𝑐,k), 𝑘𝑚 𝑘
𝑚 ≡ ∓(

𝜔2

𝑐2
− k2) = 0.

H = [n× E] , (n,H) = 0 , n =
k

𝑘
, 𝑘 =

𝜔

𝑐
, 𝑘 =

2𝜋

𝜆
.

Вектор поляризации

e =
E0

|E0|
= 𝑒1e

(1) + 𝑒2e
(2) , (e(1)e(2)*) = 0 , (e(1,2),n) = 0, |E0| =

√︀
E*

0E0.

Линейный базис: e(1) = e(𝑥) , e(2) = e(𝑦) , (n ‖ 𝑧) ,
циркулярный базис

e(+1) = − 1√
2

(︀
e(𝑥) + 𝑖e(𝑦)

)︀
, e(−1) =

1√
2

(︀
e(𝑥) − 𝑖e(𝑦)

)︀
.

Усреднение по времени
Re {A0𝑒−𝑖𝜔𝑡}Re {B0𝑒−𝑖𝜔𝑡} = 1

2
Re(A0B

*
0) .

Усреднение по поляризации ⟨𝑒𝛼𝑒*𝛽⟩ = 1
2

(𝛿𝛼𝛽 − 𝑛𝛼𝑛𝛽) .

13 Излучение и рассеяние электромагнитных волн
Интенсивность мультипольного излучения

𝑑𝐼𝑑 =
1

4𝜋𝑐3
[d̈× n]2𝑑Ω, 𝑑Ω = sin 𝜃 𝑑𝜃 𝑑𝜙,

𝐼𝑑 =
2

3𝑐3
d̈2 ; 𝐼𝑚 =

2

3𝑐3
𝜇̈2 ; 𝐼𝑞 =

1

180𝑐5

...

𝑄𝛼𝛽

...

𝑄𝛼𝛽 .

Сила радиационного трения

F𝑓𝑟 =
2𝑒2

3𝑐3
v̈ .

«Классический радиус», сечение рассеяния э.м. волны на свободной частице (𝜎𝑇 ) и осцил-
ляторе

𝑟0 =
𝑒2

𝑚𝑐2
; 𝜎𝑇 =

8𝜋

3
𝑟20 ; 𝜎 = 𝜎𝑇

𝜔4

(𝜔2
0 − 𝜔2)2 + 𝜔2𝛾2

.
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