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Предисловие

Сразу ответим на напрашивающийся вопрос: «Если это вторая часть, то где первая?» Первая часть —
это книга «Как понимать квантовую механику» (далее эта книга обозначается как КПКМ). Этот конспект
можно рассматривать как продолжение книги КПКМ. В дальнейшем предполагается данный конспект и
КПКМ в какой-то форме объединить: сделать двухтомник, или одну толстую книгу, возможно перерабо-
тав обе части для большего единообразия стиля.

В данном конспекте изложен (частично) лекционный материал второй части стандартного для МФТИ
годового курса квантовой механики для ФРКТ (лектор — М.Г. Иванов).

Первая часть курса читалась на основе 2-го издания книги М.Г. Иванов «Как понимать квантовую
механику»1.

Материал второй части курса покрывается книгой КПКМ только фрагментарно. В разделах, изло-
женных в КПКМ даны ссылки на соответствующие разделы КПКМ.

Также часть материала изложена в подготавливающейся к изданию книге М.Г. Иванов «Механика и
теория поля» (далее эта книга обозначается как МТП).

Ссылки на отдельные разделы этой книги также могут появляться в конспекте. Вопросы, связан-
ные с квантовой механикой обсуждаются в МТП главным образом в части 5 «Механика классическая и
квантовая как классическая теория поля».

На книгу МТП также будут идти все ссылки на вопросы связанные с классической механикой и
классической теорией поля2.

(!!!) В соответствии с принятыми в книге МТП соглашениями мы будем использовать метрику Мин-
ковского 𝜂𝑖𝑗 = diag(−1,+1,+1,+1), т. е. обратным знаком по сравнению с курсом теоретической физики
Ландау и Лифшица.

Все формулы записываются в симметричной (гауссовой) системе СГС.
Материалы по курсу, включая этот конспект, как и раньше будут выкладываться на Яндекс-диск.
Этот конспект, книги КПКМ и МТП, а также ряд других материалов (включая методички и видео-

записи) доступны на авторском сайте по адресу https://mgivanov.ru.

Призываю читателей присылать найденные конспекте опечатки и ляпы (особенно в формулах!). Опе-
чатки, присланные студентами слушающими курс, учитываются при выставлении оценки за работу в
семестре.

За присланные опечатки выражаю благодарность В.А. Дудченко, А.А. Пластинину, В.Е. Тяжелкову.
В конспекте используются следующие обозначения:
(л) — ликбезовский материал напоминает необходимые разделы математики в контексте данного кур-

са3;
1КПКМ оказалась книгой не столько для студентов, сколько для преподавателей квантовой механики, поэтому для

первого семестра пришлось делать комментированную программу с указанием какие параграфы КПКМ по какой теме
рекомендуется читать, причём порядок чтения оказался не всегда линейным.

2Другие книги также могут быть полезны, но для автора удобнее ссылаться на свои книги, что позволяет добиться
лучшего единства изложения (в том числе единства обозначений и соглашений).

3Как обычно в теоретической физике, математика излагается «на физическом уровне строгости», т. е. все условия, ко-
торые требуются для применения используемых операций, предполагаются выполненными. Таким образом, знакомство с
тем или иным математическим формализмом по данному пособию не заменяет изучения соответствующих разделов мате-
матики по учебникам, излагающим материал на математическом уровне строгости, со всеми необходимыми оговорками в
определениях и формулировках теорем, со строгими доказательствами. В данном пособии математически строгое изложение
всего материала не является возможным как по причине ограниченности объёма, так и потому, что основной целью пособия
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(ф) — обсуждение физического смысла;
(п) — обсуждение приложений вне квантовой механики;
* — материал для углубленного изучения;
** — факультативный материал;
*** — факультативный материал повышенной сложности;
(∼) — предварительные нестрогие соображения, полезные для понимания.
Метки типа (∼ /) (/ ∼), подобно скобкам, обрамляют фрагмент текста, помеченный символом ∼.
Аналогичные «скобки» могут использоваться для других меток.

является обучение применению соответствующих методов к решению физических задач. Тем не менее и не до конца строгое
изложение является полезным не только как шпаргалка-приложение к задачнику. При математически строгом изложении
часто опускаются нестрогие наводящие соображения, благодаря которым соответствующие разделы математики могли быть
созданы, в данном пособии такие соображения по возможности проговариваются явно.
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Глава 0

Геометрическая прогрессия (л)

На протяжении второго семестра квантовой механики нам снова и снова будут встречаться геометри-
ческие прогрессии и похожие на них ряды, но знаменателями этих прогрессий обычно будут не числа, а
операторы. В связи с этим полезно вспомнить и систематизировать соответствующий материал из мате-
матического анализа в соответствующем контексте.

Основная цель данной главы — показать как возникают асимптотические ряды, которые сначала ведут
себя почти как сходящиеся и позволяют получить разумное приближение к ответу, а потом всё-таки
расходятся.

0.1 Геометрическая прогрессия с комплексным знаменателем
Рассмотрим сумму геометрической прогрессии

𝑆(𝑞) :=

∞∑︁
𝑘=0

𝑞𝑘 = 1 + 𝑞 + 𝑞2 + · · ·+ 𝑞𝑛 + · · · = 1 + 𝑞
(︀
1 + 𝑞 + 𝑞2 + · · ·+ 𝑞𝑛 + . . .

)︀
= 1 + 𝑞 𝑆(𝑞). (1)

Отсюда можно найти хорошо знакомую школьную формулу суммы геометрической прогрессии

𝑆(𝑞) =
1

1− 𝑞
. (2)

Если сумма (1) определена, то эта формула должна работать.
Для комплексного 𝑞 условия сходимости определяются

𝑆(𝑞) =

⎧⎨⎩
1

1−𝑞 , |𝑞| < 1,

∞, |𝑞| > 1 или 𝑞 = 1,
не существует, |𝑞| = 1, 𝑞 ̸= 1;

𝑞 ∈ C. (3)

• |𝑞| < 1 — (в случае общего положения) ломаная линия вписанная в скручивающуюся логарифмиче-
скую спираль сходится к точке,

• |𝑞| > 1 — (в случае общего положения) ломаная линия вписанная в раскручивающуюся логарифми-
ческую спираль стремится к бесконечности,

• |𝑞| = 1, 𝑞 ̸= 1 — ломанная линия вписанная в окружность не имеет предела,

• 𝑞 = 1 — ломанная с единичными звеньями вытянутая вдоль прямой стремится к бесконечности.

Мы можем посмотреть на формулу (2) и с другой стороны: геометрическая прогрессия — это ряд
Тейлора для функции

𝑓(𝑞) =
1

1− 𝑞
,

ряд_Тейлора[𝑓(𝑞)] = 1 + 𝑞 + 𝑞2 + · · ·+ 𝑞𝑛 + · · · = 𝑆(𝑞). (4)

Ряд Тейлора имеет единичный радиус сходимости, но формальный ряд можно написать при любом 𝑞.
И при любом 𝑞 данному ряду соответствует функция 𝑓(𝑞), которую можно восстановить с помощью
аналитического продолжения из единичного диска, где ряд сходится, на всю комплексную плоскость
кроме 𝑞 = 1. Это позволяет использовать формулу (2) и в тех случаях, когда ряд не сходится.

Но приближать функцию 𝑓(𝑞) с помощью ряда Тейлора можно только при |𝑞| < 1, а если |𝑞| ≪ 1, то для
практических вычислений из ряда Тейлора достаточно взять несколько первых членов (часто достаточно
взять 𝑓(𝑞) ≈ 1 + 𝑞).
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0.2 Норма оператора

Для операторов мы также можем определить геометрическую прогрессию (1), просто надев шляпку
на знаменатель:

𝑆(𝑞) :=

∞∑︁
𝑘=0

𝑞𝑘 = 1̂ + 𝑞 + 𝑞2 + · · ·+ 𝑞𝑛 + · · · = 1̂ + 𝑞
(︀
1̂ + 𝑞 + 𝑞2 + · · ·+ 𝑞𝑛 + . . .

)︀
= 1̂ + 𝑞 𝑆(𝑞). (5)

Вопрос о сходимости для операторной геометрический прогрессии оказывается тоньше.
Аналогом модуля числа для оператора служит его норма1:

‖𝑞‖ = sup
𝜓 ̸=0

‖𝑞𝜓‖
‖𝜓‖

, ‖𝜓‖ =
√︀
⟨𝜓|𝜓⟩. (6)

Если для оператора существует базис собственных векторов2, то норма определяется максимальным мо-
дулем собственного числа оператора:

‖𝑁̂‖ = sup |𝜆|, [𝑁̂ , 𝑁̂†] = 0, 𝑁̂𝜓 = 𝜆𝜓. (7)

В квантовой механике знаменатель операторной геометрической прогрессии часто будет нормальным
оператором.

Условие сходимости ряда — ‖𝑞‖ < 1, получаем обобщение формулы (3):

𝑆(𝑞) =

{︂
(1− 𝑞)−1, ‖𝑞‖ < 1,

ряд расходится, ‖𝑞‖ ⩾ 1.
(8)

Вроде бы задача решена, но в квантовой механике операторы наблюдаемых величин часто неограниче-
ны, т. е. имеют бесконечную норму. Так обычно не ограничен сверху спектр гамильтониана (есть сколь
угодно высокие уровни энергии). Неограничены операторы импульса, координаты, орбитального момента
импульса и многие другие3.

Так что в физике часто бывает ситуация, когда ряд расходится, но считать всё равно надо. И тут
помогает уточнение области определения отдельных членов ряда и суммы ряда.

0.3 Область определения оператора

(*/) Для неограниченного оператора область определения не совпадает с гильбертовым простран-
ством, поскольку всегда найдётся вектор с конечной нормой, который после действия неограниченного
оператора приобретёт бесконечную норму. Такой вектор в область определения не включается.

Если неограниченный оператор является нормальным, то его область определения плотна в гильберто-
вом пространстве. Если оператор имеет физический смысл, то физики обычно о его области определения
просто не задумываются (пока не наткнутся на противоречие в вычислениях).(/*)

Для каждого собственного вектора 𝜓𝜆 нормального оператора 𝑁̂ операторная геометрическая про-
грессия сводится к геометрической прогрессии от собственного числа.

𝑁̂𝜓𝜆 = 𝜆𝜓𝜆 ⇒ 𝑆(𝑁̂)𝜓𝜆 = (1̂ + 𝑁̂ + 𝑁̂2 + · · ·+ 𝑁̂𝑛 + . . . )𝜓𝜆 = (1 + 𝜆+ 𝜆2 + · · ·+ 𝜆𝑛 + . . . )𝜓𝜆 = 𝑆(𝜆)𝜓𝜆.

Для суммы числовой геометрической прогрессии 𝑆(𝜆) мы имеем обычные условия сходимости (3). Так
что даже если оператор 𝑁̂ неограничен, на собственных векторах для которых |𝜆| < 1 оператор 𝑆(𝑁̂)
оказывается определён.

Таким образом, мы нашли область определения оператора 𝑆(𝑁̂) — это подпространство ℋ𝑆(𝑁) натя-
нутое на собственные векторы для которых |𝜆| < 1.

На подпространстве ℋ̸𝑆(𝑁), натянутом на собственные векторы, для которых |𝜆| ⩾ 1 оператор 𝑆(𝑁̂)
не определён, но области определения частичных сумм геометрической прогрессии плотны в ℋ ̸𝑆(𝑁).

1В математике принято считать, что норма должна быть конечной, а если выражение (6) даёт бесконечность, то норма
не определена. Мы будем считать, что в этом случае норма принимает значение +∞. Мы также будем рассматривать
только такие гильбертовы пространства, в которых имеются ненулевые векторы (то есть не рассматриваем случай, когда
всё пространство состоит из одного нулевого вектора).

2Такие операторы называют нормальными. Для нормального оператора 𝑁̂ выполняется условие [𝑁̂, 𝑁̂†] = 0. Унитарные
и самосопряжённые операторы относятся к нормальным.

3Зато все унитарные операторы ограничены и для них всегда ‖𝑈̂‖ = 1. Поэтому математики, занимающиеся квантовой
механикой, любят переводить соотношения с языка самосопряжённых операторов на язык унитарных операторов.
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0.4 Асимптотические ряды
Любой вектор 𝜓 ∈ ℋ может быть разложен на два ортогональных слагаемых, лежащих в ℋ𝑆(𝑁) и

ℋ ̸𝑆(𝑁) соответственно:
𝜓 = 𝜓𝑆(𝑁) + 𝜓̸𝑆(𝑁). (9)

Пусть на вектор 𝜓 действует оператор частичной суммы геометрической прогрессии

𝑆𝐾(𝑁̂) :=

𝐾∑︁
𝑘=0

𝑁̂𝑘. (10)

𝑆𝐾(𝑁̂)𝜓 = 𝑆𝑘(𝑁̂)𝜓𝑆(𝑁) + 𝑆𝑘(𝑁̂)𝜓 ̸𝑆(𝑁). (11)

При 𝐾 → ∞ первое слагаемое сходится:

𝑆𝐾(𝑁̂)𝜓𝑆(𝑁) → 𝑆(𝑁̂)𝜓𝑆(𝑁), 𝐾 → ∞,

а второе — расходится:
𝑆𝐾(𝑁̂)𝜓 ̸𝑆(𝑁) → ∞, 𝐾 → ∞.

В задачах квантовой механики мы будем иметь дело с действием операторных геометрических про-
грессий на векторы, которые почти попадают в пространство ℋ𝑆(𝑁), т. е. с ситуацией когда

𝜓 = 𝜓𝑆(𝑁) + 𝜓̸𝑆(𝑁), ‖𝜓𝑆(𝑁)‖ ≫ ‖𝜓 ̸𝑆(𝑁)‖. (12)

В этом случае ряд (11), конечно, расходится, поскольку даже малая добавка 𝜓 ̸𝑆(𝑁) под действием опера-
тора 𝑆𝐾(𝑁̂) мере роста 𝐾 будет неограниченно расти, но для не слишком больших 𝐾 эта добавка будет
ещё мала. В таком случае приближённое равенство

(1̂− 𝑁̂)−1𝜓 ≈ 𝑆𝐾(𝑁̂)𝜓 =

𝐾∑︁
𝑘=0

(𝑁̂𝑘𝜓) (13)

по мере роста 𝐾 сначала будет выполняться всё лучше и лучше (пока расходящееся слагаемое мало по
сравнению с ‖{𝑆(𝑁̂)−𝑆𝐾(𝑁̂)}𝜓‖), но начиная с какого-то момента по мере роста 𝐾 точность приближения
(13) начнёт ухудшаться.

Ряд в правой части (13) обычно не сходящийся а асимптотический. Мы не будем подробно обсуждать
свойства таких рядов (и даже аккуратно определять их), отметим только, что асимптотический ряд
расходится, но первые несколько слагаемых могут давать хорошее приближение для искомой функции.

(!) Для того, чтобы оператор (1 − 𝑁̂)−1 был определён, не нужно, чтобы ряд сходился, достаточно,
чтобы среди собственных чисел оператора 𝑁̂ не было единиц. Так что для любых собственных чисел 𝜆 ̸= 1
геометрической прогрессии можно приписать предел:

1

1− 𝜆
= аналитическое_продолжение[𝑆(𝜆)],

аналогично (поточечно), в подпространстве, соответствующим неединичным собственным числам

1

1− 𝑁̂
= аналитическое_продолжение[𝑆(𝑁̂)].

(*) Если есть возможность спроецировать функции на ℋ𝑆(𝑁), то ряд станет сходящимся, но предел
не будет точным ответом: нам нужна функция (1− 𝑁̂)−1𝜓, а выполнив проекцию мы получим

(1− 𝑁̂)−1𝜓𝑆(𝑁) = lim
𝐾→∞

𝑆𝐾(𝑁̂)𝜓𝑆(𝑁).

Мы ошибёмся на
(1− 𝑁̂)−1𝜓 ̸𝑆(𝑁).

Последняя оценка следует из линейности оператора.
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Глава 1

Стационарная теория возмущений

Для типичного гамильтониана 𝐻̂ стационарное уравнение Шрёдингера

𝐻̂𝜓𝑎 = 𝐸𝑎𝜓𝑎, 𝑎 — номер уровня (1.1)

не решается аналитически. Поэтому нам нужны приближённые методы, к числу которых относится ста-
ционарная теория возмущений.

Пусть нам повезло и гамильтониан 𝐻̂ можно представить в виде

𝐻̂ = 𝐻̂0 + 𝑉 , (1.2)

где 𝐻̂0 — «хороший» невозмущённый гамильтониан, для которого мы умеем решать стационарное урав-
нение Шрёдингера, а 𝑉 — малая поправка (возмущение).

(!) Разложение (1.2) гамильтониана 𝐻̂ на невозмущённый гамильтониан 𝐻̂0 и возмущение 𝑉 — вопрос
удобства решения уравнения Шрёдингера, поэтому такое разложения определено не однозначно.

Мы будем искать решение для стационарного уравнения Шрёдингера (1.1) методом последовательных
приближений, начиная с решения стационарного уравнения Шрёдингера для невозмущённого гамильто-
ниана:

𝐻̂0𝜓
(0)
𝑎 = 𝐸(0)

𝑎 𝜓(0)
𝑎 . (1.3)

(п) Теория возмущений, в том виде в котором мы её строим применима не только в квантовой ме-
ханике. Приближённое решения спектральной задачи для эрмитового оператора или матрицы полезно
для классических задач математической физики (теплопроводность, колебания и волны и т. п.) и для
численного решения дифференциальных уравнений (обыкновенных и в частных производных).

1.1 Постановка задачи

Перепишем разложение (1.2) гамильтониана 𝐻̂ на невозмущённый гамильтониан 𝐻̂0 и возмущение 𝑉
добавив перед 𝑉 малый вещественный множитель 𝜀:

𝐻̂ = 𝐻̂0 + 𝜀𝑉 . (1.4)

Мы всегда можем вернуться от разложения (1.4) к разложению (1.2) положив 𝜀 = 1, но новое разложе-
ние (1.4) удобнее тем, что в нём присутствует числовой малый параметр 𝜀. Это позволит нам (хотя бы в
начале) не разбираться что значит малость оператора 𝑉 , а просто устремить 𝜀 → 0. Кроме того, разло-
жение по степеням 𝜀 позволяет легко контролировать степень малости разных членов в рассматриваемых
уравнениях.

Мы будем искать решение уравнения Шрёдингера (1.1) в виде степенных рядов по 𝜀:

𝐸𝑎 = 𝐸0
𝑎 + 𝜀𝐸(1)

𝑎 + 𝜀2𝐸(2)
𝑎 + . . . , (1.5)

𝜓𝑎 = 𝜓0
𝑎 + 𝜀𝜓(1)

𝑎 + 𝜀2𝜓(2)
𝑎 + . . . (1.6)

(!) Это автоматически означает, что уровни энергии гамильтонианов 𝐻̂ и 𝐻̂0 могут быть пронумерованы
одинаковым образом. Дальше мы увидим, что порядок уровней не должен меняться.

Подставим разложения (1.4), (1.5), (1.6) в уравнение Шрёдингера (1.1):

(𝐻̂0 + 𝜀𝑉 )(𝜓0
𝑎 + 𝜀𝜓(1)

𝑎 + 𝜀2𝜓(2)
𝑎 + . . . ) = (𝐸0

𝑎 + 𝜀𝐸(1)
𝑎 + 𝜀2𝐸(2)

𝑎 + . . . )(𝜓0
𝑎 + 𝜀𝜓(1)

𝑎 + 𝜀2𝜓(2)
𝑎 + . . . ). (1.7)

9



Раскрыв скобки мы можем приравнять друг другу члены с определёнными степенями 𝜀, начиная с 𝜀0:

𝐻̂0𝜓
(0)
𝑎 = 𝐸(0)

𝑎 𝜓(0)
𝑎 , (1.8)

𝐻̂0𝜓
(1)
𝑎 + 𝑉 𝜓(0)

𝑎 = 𝐸(0)
𝑎 𝜓(1)

𝑎 + 𝐸(1)
𝑎 𝜓(0)

𝑎 , (1.9)
𝐻̂0𝜓

(2)
𝑎 + 𝑉 𝜓(1)

𝑎 = 𝐸(0)
𝑎 𝜓(2)

𝑎 + 𝐸(1)
𝑎 𝜓(1)

𝑎 + 𝐸(2)
𝑎 𝜓(0)

𝑎 , (1.10)
. . . . . . ,

𝐻̂0𝜓
(𝑛)
𝑎 + 𝑉 𝜓(𝑛−1)

𝑎 =

𝑛∑︁
𝑘=0

𝐸(𝑘)
𝑎 𝜓(𝑛−𝑘)

𝑎 . (1.11)

(*) После получения системы (1.8), (1.9), (1.10), (1.11) параметр 𝜀 нам больше не нужен и мы можем
положить его равным единице.

Уравнение нулевого порядка теории возмущений (1.8) совпало с невозмущённым уравнением Шрёдин-
гера (1.3). Предполагается, что это уравнение уже решено. Далее мы последовательно решаем уравнения
(1.9), (1.10), (1.11) до тех пор, пока не достигнем нужной нам точности.

Во многих задачах (в частности почти во всех учебных задачах) можно ограничиться первым нетри-
виальным порядком разложения, т. е. первым порядком в котором к решению невозмущённого уравнения
Шрёдингера возникает ненулевая поправка. Обычно хватает первой или второй поправки для энергий и
первой поправки для волновых функций.

(!*) Ряды теории возмущений (1.5), (1.6) часто (как правило) расходятся! Тем не менее. первые
несколько порядков теории возмущений обычно дают хорошее приближение к точному решению (см.
главу 0 «Геометрическая прогрессия»).

(!) Уравнения (1.9), (1.10), (1.11) можно решать в любом базисе. Иногда их удобно решать как диф-
ференциальные уравнения в координатном базисе. Стандартный подход состоит в том, чтобы решать
уравнения в базисе стационарных состояний невозмущённого гамильтониана.

1.2 Невырожденный спектр

Пусть гамильтонианы 𝐻̂ и 𝐻̂0 имеют только невырожденный дискретный спектр.
Скалярно умножим уравнения (1.9), (1.10), (1.11) на невозмущённое стационарное состояние 𝜓(0)

𝑏 .

⟨𝜓(0)
𝑏 |𝐻̂0|𝜓(1)

𝑎 ⟩+ ⟨𝜓(0)
𝑏 |𝑉 |𝜓(0)

𝑎 ⟩ = 𝐸(0)
𝑎 ⟨𝜓(0)

𝑏 |𝜓(1)
𝑎 ⟩+ 𝐸(1)

𝑎 ⟨𝜓(0)
𝑏 |𝜓(0)

𝑎 ⟩, (1.12)

⟨𝜓(0)
𝑏 |𝐻̂0|𝜓(2)

𝑎 ⟩+ ⟨𝜓(0)
𝑏 |𝑉 |𝜓(1)

𝑎 ⟩ = 𝐸(0)
𝑎 ⟨𝜓(0)

𝑏 |𝜓(2)
𝑎 ⟩+ 𝐸(1)

𝑎 ⟨𝜓(0)
𝑏 |𝜓(1)

𝑎 ⟩+ 𝐸(2)
𝑎 ⟨𝜓(0)

𝑏 |𝜓(0)
𝑎 ⟩, (1.13)

. . . . . . ,

⟨𝜓(0)
𝑏 |𝐻̂0|𝜓(𝑛)

𝑎 ⟩+ ⟨𝜓(0)
𝑏 |𝑉 |𝜓(𝑛−1)

𝑎 ⟩ =

𝑛∑︁
𝑘=0

𝐸(𝑘)
𝑎 ⟨𝜓(0)

𝑏 |𝜓(𝑛−𝑘)
𝑎 ⟩. (1.14)

Используем соотношения
⟨𝜓(0)
𝑏 |𝐻̂0 = ⟨𝜓(0)

𝑏 |𝐸(0)
𝑏 , ⟨𝜓(0)

𝑏 |𝜓(0)
𝑎 ⟩ = δ𝑏𝑎

и введём обозначение
𝑉𝑏𝑎 = ⟨𝜓(0)

𝑏 |𝑉 |𝜓(0)
𝑎 ⟩.

Получаем

𝐸
(0)
𝑏 ⟨𝜓(0)

𝑏 |𝜓(1)
𝑎 ⟩+ 𝑉𝑏𝑎 = 𝐸(0)

𝑎 ⟨𝜓(0)
𝑏 |𝜓(1)

𝑎 ⟩+ 𝐸(1)
𝑎 ⟨𝜓(0)

𝑏 |𝜓(0)
𝑎 ⟩, (1.15)

𝐸
(0)
𝑏 ⟨𝜓(0)

𝑏 |𝜓(2)
𝑎 ⟩+ ⟨𝜓(0)

𝑏 |𝑉 |𝜓(1)
𝑎 ⟩ = 𝐸(0)

𝑎 ⟨𝜓(0)
𝑏 |𝜓(2)

𝑎 ⟩+ 𝐸(1)
𝑎 ⟨𝜓(0)

𝑏 |𝜓(1)
𝑎 ⟩+ 𝐸(2)

𝑎 ⟨𝜓(0)
𝑏 |𝜓(0)

𝑎 ⟩, (1.16)
. . . . . . ,

𝐸
(0)
𝑏 ⟨𝜓(0)

𝑏 |𝜓(𝑛)
𝑎 ⟩+ ⟨𝜓(0)

𝑏 |𝑉 |𝜓(𝑛−1)
𝑎 ⟩ =

𝑛∑︁
𝑘=0

𝐸(𝑘)
𝑎 ⟨𝜓(0)

𝑏 |𝜓(𝑛−𝑘)
𝑎 ⟩. (1.17)

Рассмотрим диагональные члены, для которых 𝑎 = 𝑏. Первый слагаемые в левой и правой частях каж-
дого уравнения сократятся, в последних слагаемых в правой части скалярное произведение обращается в
единицу:

𝑉𝑎𝑎 = 𝐸(1)
𝑎 , (1.18)

⟨𝜓(0)
𝑎 |𝑉 |𝜓(1)

𝑎 ⟩ = 𝐸(1)
𝑎 ⟨𝜓(0)

𝑎 |𝜓(1)
𝑎 ⟩+ 𝐸(2)

𝑎 , (1.19)
. . . . . . ,

⟨𝜓(0)
𝑎 |𝑉 |𝜓(𝑛−1)

𝑎 ⟩ =

𝑛−1∑︁
𝑘=1

𝐸(𝑘)
𝑎 ⟨𝜓(0)

𝑎 |𝜓(𝑛−𝑘)
𝑎 ⟩+ 𝐸(𝑛)

𝑎 . (1.20)
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Мы получили первую поправку к энергии 𝐸
(0)
𝑎 в явном виде, а для следующих поправок к энергии нам

нужны все предыдущие поправки к энергии и проекции разложения всех предыдущих поправок к волно-
вой функции на невозмущённое состояние:

𝐸(1)
𝑎 = 𝑉𝑎𝑎, (1.21)

𝐸(2)
𝑎 = ⟨𝜓(0)

𝑎 |𝑉 − 𝐸(1)
𝑎 |𝜓(1)

𝑎 ⟩, (1.22)
. . . . . . ,

𝐸(𝑛)
𝑎 = ⟨𝜓(0)

𝑎 |𝑉 − 𝐸(1)
𝑎 |𝜓(𝑛−1)

𝑎 ⟩ −
𝑛−1∑︁
𝑘=2

𝐸(𝑘)
𝑎 ⟨𝜓(0)

𝑎 |𝜓(𝑛−𝑘)
𝑎 ⟩. (1.23)

Рассмотрим недиагональные члены, для которых 𝑎 ̸= 𝑏. Первое слагаемые из левой части каждого
уравнения перенесём вправо и скомбинирует с первым слагаемым в правой части, в последних слагаемых
в правой части скалярное произведение обращается в нуль:

𝑉𝑏𝑎 = (𝐸(0)
𝑎 − 𝐸

(0)
𝑏 )⟨𝜓(0)

𝑏 |𝜓(1)
𝑎 ⟩, (1.24)

⟨𝜓(0)
𝑏 |𝑉 |𝜓(1)

𝑎 ⟩ = (𝐸(0)
𝑎 − 𝐸

(0)
𝑏 )⟨𝜓(0)

𝑏 |𝜓(2)
𝑎 ⟩+ 𝐸(1)

𝑎 ⟨𝜓(0)
𝑏 |𝜓(1)

𝑎 ⟩, (1.25)
. . . . . . ,

⟨𝜓(0)
𝑏 |𝑉 |𝜓(𝑛−1)

𝑎 ⟩ = (𝐸(0)
𝑎 − 𝐸

(0)
𝑏 )⟨𝜓(0)

𝑏 |𝜓(𝑛)
𝑎 ⟩+

𝑛−1∑︁
𝑘=1

𝐸(𝑘)
𝑎 ⟨𝜓(0)

𝑏 |𝜓(𝑛−𝑘)
𝑎 ⟩. (1.26)

Отсюда получаем недиагональные коэффициенты разложения 𝑛-й поправки к волновой функции по
невозмущённым состояниям:

⟨𝜓(0)
𝑏 |𝜓(1)

𝑎 ⟩ =
𝑉𝑏𝑎

𝐸
(0)
𝑎 − 𝐸

(0)
𝑏

, (1.27)

⟨𝜓(0)
𝑏 |𝜓(2)

𝑎 ⟩ =
⟨𝜓(0)
𝑏 |𝑉 |𝜓(1)

𝑎 ⟩
𝐸

(0)
𝑎 − 𝐸

(0)
𝑏

− 𝐸
(1)
𝑎

𝐸
(0)
𝑎 − 𝐸

(0)
𝑏

⟨𝜓(0)
𝑏 |𝜓(1)

𝑎 ⟩, (1.28)

. . . . . . ,

⟨𝜓(0)
𝑏 |𝜓(𝑛)

𝑎 ⟩ =
⟨𝜓(0)
𝑏 |𝑉 |𝜓(𝑛−1)

𝑎 ⟩
𝐸

(0)
𝑎 − 𝐸

(0)
𝑏

−
𝑛−1∑︁
𝑘=1

𝐸
(𝑘)
𝑎

𝐸
(0)
𝑎 − 𝐸

(0)
𝑏

⟨𝜓(0)
𝑏 |𝜓(𝑛−𝑘)

𝑎 ⟩. (1.29)

(!!!) Мы видим, что даже в первом порядке теории возмущений мы можем найти только недиаго-
нальные (𝑎 ̸= 𝑏) коэффициенты разложения. Это связано с тем, что мы фиксировали нормировку невоз-
мущённых волновых функций 𝜓

(0)
𝑎 , а нормировка возмущённых волновых функций до сих пор осталась

произвольной. Мы можем выбирать все скалярные произведения, которые не можем вычислить произ-
вольно, для максимального упрощения уравнений (1.21), (1.22), (1.23), (1.27), (1.28), (1.29) положим

⟨𝜓0
𝑎|𝜓(𝑛)

𝑎 ⟩ = 0 (1.30)

Уравнения (1.21), (1.22), (1.23) теперь переписываются в следующем простом виде

𝐸(1)
𝑎 = 𝑉𝑎𝑎, (1.31)

𝐸(2)
𝑎 = ⟨𝜓(0)

𝑎 |𝑉 |𝜓(1)
𝑎 ⟩, (1.32)

. . . . . . ,

𝐸(𝑛)
𝑎 = ⟨𝜓(0)

𝑎 |𝑉 |𝜓(𝑛−1)
𝑎 ⟩. (1.33)

Получившуюся систему можно последовательно решать

𝐸(1)
𝑎 = 𝑉𝑎𝑎, (1.34)

𝜓(1)
𝑎 =

∑︁
𝑏 ̸=𝑎

𝜓
(0)
𝑏 ⟨𝜓(0)

𝑏 |𝜓(1)
𝑎 ⟩ =

∑︁
𝑏 ̸=𝑎

𝜓
(0)
𝑏

𝑉𝑏𝑎

𝐸
(0)
𝑎 − 𝐸

(0)
𝑏

, (1.35)

𝐸(2)
𝑎 = ⟨𝜓(0)

𝑎 |𝑉 |𝜓(1)
𝑎 ⟩ =

∑︁
𝑏̸=𝑎

𝑉𝑎𝑏
𝑉𝑏𝑎

𝐸
(0)
𝑎 − 𝐸

(0)
𝑏

, (1.36)

𝜓(2)
𝑎 =

∑︁
𝑏,𝑐 ̸=𝑎

𝜓
(0)
𝑏

(︃
𝑉𝑏𝑐𝑉𝑐𝑎

(𝐸
(0)
𝑎 − 𝐸

(0)
𝑏 )(𝐸

(0)
𝑎 − 𝐸

(0)
𝑐 )

− 𝑉𝑏𝑎𝑉𝑎𝑎

(𝐸
(0)
𝑎 − 𝐸

(0)
𝑏 )2

)︃
, (1.37)

. . . . . . .
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В большинстве задач нам достаточно первых двух поправок к энергии (1.34), (1.36) и первой поправки
к волновой функции (1.35).

Волновая функция, вычисленная с точностью до первого порядка теории возмущений имеет скалярный
квадрат, отличающийся от 1 на член второго порядка малости:

⟨𝜓(0)
𝑎 + 𝜀𝜓(1)

𝑎 |𝜓(0)
𝑎 + 𝜀𝜓(1)

𝑎 ⟩ = 1 + 𝜀2
∑︁
𝑏 ̸=𝑎

⃒⃒⃒⃒
⃒ 𝑉𝑏𝑎

𝐸
(0)
𝑎 − 𝐸

(0)
𝑏

⃒⃒⃒⃒
⃒
2

. (1.38)

Таким образом, волновая функция в первом порядке теории возмущений оказывается нормированной с
точностью до второго порядка1. Работая в первом порядке теории возмущений перенормировать её на
единицу было бы превышением точности.

Рассматривая полученный ответ мы видим, каково условие малости возмущения, т. е. каково условие
применимости теории возмущений:

|𝑉𝑎𝑏| ≪ |𝐸(0)
𝑎 − 𝐸

(0)
𝑏 |. (1.39)

Матричный элемент возмущения между двумя невозмущёнными состояниями должен быть мал по срав-
нению с разностью энергий этих состояний.

(*) Если гамильтонианы кроме дискретного спектра имеют непрерывный, то в формулах для попра-
вок к дискретным уровням энергии суммы по дискретному спектру следует дополнить интегралами по
непрерывному, например

𝜓(1)
𝑎 =

∑︁
𝑏 ̸=𝑎

𝜓
(0)
𝑏 𝑉𝑏𝑎

𝐸
(0)
𝑎 − 𝐸

(0)
𝑏

+

ˆ
𝜓
(0)
𝑏 𝑉𝑏𝑎 𝑑𝑏

𝐸
(0)
𝑎 − 𝐸

(0)
𝑏

, 𝐸(2)
𝑎 =

∑︁
𝑏 ̸=𝑎

|𝑉𝑏𝑎|2

𝐸
(0)
𝑎 − 𝐸

(0)
𝑏

+

ˆ
|𝑉𝑏𝑎|2 𝑑𝑏

𝐸
(0)
𝑎 − 𝐸

(0)
𝑏

.

(**) При внимательном рассмотрении мы видим, что вклад диагональных матричных элементов воз-
мущения — это ещё не совсем настоящая теория возмущений. Введём оператор диагональной части воз-
мущения

𝑉diag =
∑︁
𝑎

|𝜓(0)
𝑎 ⟩𝑉𝑎𝑎⟨𝜓(0)

𝑎 |. (1.40)

Мы можем переписать исходный гамильтониан 𝐻̂ (1.2) в следующем виде

𝐻̂ = (𝐻̂0 + 𝑉diag) + (𝑉 − 𝑉diag). (1.41)

В качестве нового невозмущённого гамильтониана возьмём 𝐻̂0 + 𝑉diag, а в качестве нового возмущения
— недиагональную часть прежнего 𝑉 − 𝑉diag. Новые невозмущённые состояния по-прежнему 𝜓(0)

𝑎 , новые
невозмущённые уровни энергии 𝐸(0)

𝑎 + 𝑉𝑎𝑎 включают прежнюю первую поправку.

1.3 Вырожденный спектр

Пусть спектр невозмущённого гамильтониана 𝐻̂0 вырожден, т. е. существуют линейно независимые
состояния с 𝜓(0)

𝑎𝑖 одинаковой энергией 𝐸(0)
𝑎 .

Индексы 𝑎, 𝑏 нумеруют теперь уровни энергии, а индексы 𝑖, 𝑗 различают базисные состояния с одина-
ковой невозмущённой энергией. По сравнению с параграфом 1.2 «Невырожденный спектр» индексы 𝑎, 𝑏
заменяются на пары индексов 𝑎𝑖, 𝑏𝑗 и т.д.

⟨𝜓(0)
𝑎𝑖 |𝜓

(0)
𝑏𝑗 ⟩ = δ𝑎𝑏δ𝑖𝑗 .

Нас будут интересовать подпространство ℋ𝑎 пространства состояний ℋ, отвечающее определённому
значению энергии для невозмущённого гамильтониана, т. е. определённому значению 𝐸

(0)
𝑎 . Индекс 𝑎 фик-

сирован, а индекс 𝑖 нумерует базисные векторы 𝜓
(0)
𝑎𝑖 в подпространстве ℋ𝑎.

Полезно ввести ортогональный проектор на подпространство ℋ𝑎

𝑃𝑎 =
∑︁
𝑖

|𝜓(0)
𝑎𝑖 ⟩⟨𝜓

(0)
𝑎𝑖 |. (1.42)

На подпространстве ℋ𝑎 оператор 𝑃𝑎 действует как единичный оператор 1̂𝑎, а на ортогональных к нему
векторах — как нулевой:

𝑃 2
𝑎 = 𝑃𝑎, 𝑃𝑎|𝜓(0)

𝑏𝑗 ⟩ = δ𝑎𝑏|𝜓(0)
𝑏𝑗 ⟩.

1Вы можете считать степени 𝜀, или, если вы положили 𝜀 = 1, степени матричных элементов возмущения 𝑉𝑐𝑑
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Если ограничить оператор 𝐻̂0 на подпространство ℋ𝑎, то он будет пропорционален проектору 𝑃𝑎
𝐻̂0𝑎 = 𝑃𝑎𝐻̂0𝑃𝑎 = 𝐸(0)

𝑎 𝑃𝑎. (1.43)

На подпространстве ℋ𝑎 оператор 𝐻̂0𝑎 пропорционален единичному оператору 1̂𝑎, так что 𝐻̂0𝑎 коммутирует
со всеми операторами на этом подпространстве и диагонален при любом выборе базиса в ℋ𝑎.

Ненулевые недиагональные матричные элементы возмущения 𝑉𝑎𝑖;𝑎𝑗 в подпространстве ℋ𝑎 нарушают
условие применимости теории возмущений (1.39).

Ненулевые диагональные матричные элементы возмущения 𝑉𝑎𝑖;𝑎𝑖 условие применимости теории возму-
щений (1.39) не нарушает, это можно увидеть вернувшись к выкладкам в параграфе 1.2 «Невырожденный
спектр», либо перекинув вклад диагональных матричных элементов 𝑉 из возмущения в невозмущённый
гамильтониан, как мы делали выше (1.40), (1.41).

Матрица (или оператор)
𝑉𝑎 = 𝑃𝑎𝑉 𝑃𝑎 (1.44)

с компонентами 𝑉𝑎𝑖;𝑎𝑗 — это ограничение оператора 𝑉 на подпространство ℋ𝑎.
Оператор 𝑉𝑎 также эрмитов (как на всём пространстве ℋ, так и на подпространстве ℋ𝑎) и его можно

диагонализовать выбором базиса в ℋ𝑎. Оператор 𝐻̂0𝑎 (1.43) при этом остаётся диагональным.
Если подпространство ℋ𝑎 конечномерно (очень частый случай в задачах), то диагонализация опе-

ратора 𝑉𝑎 сводится к диагонализации конечномерной эрмитовой матрицы с компонентами 𝑉𝑎𝑖;𝑎𝑗 . После
диагонализации диагональные матричные элементы 𝑉𝑎 могут быть найдены как собственные числа из
векового уравнения

det
ℋ𝑎

(𝑉𝑎 − 𝐸(1)1̂𝑎) = 0 ⇔ det(𝑉𝑎𝑖;𝑎𝑗 − 𝐸(1)
𝑎 δ𝑖𝑗) = 0. (1.45)

Новые базисные состояния 𝜓(0)
𝑎𝐾 диагонализуют одновременно 𝐻̂0 и 𝑉𝑎:

𝜓
(0)
𝑎𝐾 =

∑︁
𝑖

𝐶𝑎𝐾𝑖𝜓
(0)
𝑎𝑖 , 𝑉𝑎𝜓

(0)
𝑎𝐾 = 𝐸

(1)
𝑎𝐾𝜓

(0)
𝑎𝐾 , (1.46)

∑︁
𝑗

𝑉𝑎𝑖;𝑎𝑗𝐶
𝑎
𝐾𝑗 = 𝐸

(1)
𝑎𝐾𝐶

𝑎
𝐾𝑖 ⇔

∑︁
𝑗

(𝑉𝑎𝑖;𝑎𝑗 − 𝐸
(1)
𝑎𝐾δ𝑖𝑗)𝐶

𝑎
𝐾𝑗 = 0.

(О) Базисные функции 𝜓(0)
𝑎𝐾 называют правильными волновыми функциями нулевого приближения.

Если мы перешли к правильным волновым функциям нулевого приближения для всех 𝑎, то тем самым
мы одновременно диагонализовали оператор 𝐻̂0 и все операторы 𝑉𝑎. Мы можем ввести оператор

𝑉diag. =
∑︁
𝑎

𝑉𝑎 =
∑︁
𝑎

𝑃𝑎𝑉 𝑃𝑎. (1.47)

Оператор 𝑉diag. коммутирует с 𝐻̂0 и диагонализируется при одновременной диагонализации всех опера-
торов 𝑉𝑎.

(!) В исходном пространстве ℋ операторы — большие (возможно бесконечные) матрицы с компонен-
тами вида 𝑉𝑎𝑖;𝑏𝑗 . Эти матрицы можно считать блочными: индексы 𝑎, 𝑏 нумеруют блоки, а индексы 𝑖, 𝑗

— матричные элементы внутри блоков. Оператору 𝑉𝑎 соответствует один диагональный блок. Оператор
𝑉diag. — блочно диагональная матрица, образованная всеми диагональными блоками блочной матрицы 𝑉 .

1.3.1 Почти вырожденные уровни*
Если невозмущённый гамильтониан

𝐻̂0 =
∑︁
𝑎

|𝜓(0)
𝑎 ⟩𝐸𝑎⟨𝜓(0)

𝑎 |

содержит несколько близких уровней энергии 𝑐, 𝑑 ∈ 𝐷, для которых нарушается условие применимости
теории возмущений (1.39)

|𝑉𝑐𝑑| ̸≪ |𝐸(0)
𝑐 − 𝐸

(0)
𝑑 |,

то мы можем модифицировать невозмущённый гамильтониан так, чтобы проблемные уровни стали вы-
рожденными

𝐻̂ ′
0 =

∑︁
𝑎 ̸∈𝐷

|𝜓(0)
𝑎 ⟩𝐸𝑎⟨𝜓(0)

𝑎 |+ 𝐸
(0)
𝐷

∑︁
𝑐∈𝐷

|𝜓(0)
𝑐 ⟩⟨𝜓(0)

𝑐 |,

а разницу старого и нового невозмущённого гамильтонианов прибавить к возмущению

𝑉 ′ = 𝑉 +
∑︁
𝑐∈𝐷

|𝜓(0)
𝑐 ⟩(𝐸(0)

𝑐 − 𝐸
(0)
𝐷 )⟨𝜓(0)

𝑐 |.

После этого для невозмущённого гамильтониана 𝐻̂ ′
0 с возмущением 𝑉 ′ мы можем искать правильные

волновые функции нулевого приближения, как это описано выше.
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1.4 Оператор Грина в дискретном спектре*
Рассмотрим уравнение Шрёдингера для состояния дискретного спектра возмущённого гамильтониана:

(𝐻̂0 + 𝜀𝑉 )𝜓𝐸 = 𝐸𝜓𝐸 , 𝐸 = 𝐸(0) + 𝛿𝐸. (1.48)

Перепишем уравнение (1.48) вынеся возмущение в правую часть, которую рассмотрим как неоднородность

(𝐻̂0 − 𝐸(0))𝜓𝐸 = (𝛿𝐸 − 𝜀𝑉 )𝜓𝐸⏟  ⏞  
рассмотрим как неоднородность

. (1.49)

Видно, что по построению наша «неоднородность» ортогональна 𝜓(0)

⟨𝜓(0)|(𝐻̂0 − 𝐸(0))⏟  ⏞  
0

|𝜓𝐸⟩ = ⟨𝜓(0)| (𝛿𝐸 − 𝜀𝑉 )|𝜓𝐸⟩⏟  ⏞  
неоднородность

. (1.50)

Общее решение неоднородного линейного уравнения может быть представлено как сумма частного
решения неоднородного уравнения и общего решения однородного уравнения. В нашем случае

(𝐻̂0 − 𝐸(0))𝜓(0) = 0 — однородное уравнение

совпадает с невозмущённым уравнением Шрёдингера. Обозначим 𝑃(0) — ортогональные проектор на про-
странство ℋ0 решений этого уравнения.

Частное решение неоднородного уравнения можно сначала найти для некоторых базисных неоднород-
ностей (дельта-функций или фурье-гармоник), а потом разлагая по этому базису произвольные неодно-
родности линейно по неоднородности, т. е. может быть получено из неоднородности действием некоторого
линейного оператора (оператора Грина), который обозначим 𝐺̂0(𝐸

(0)). Тогда мы получаем

𝜓𝐸 = 𝜓(0) + 𝐺̂0(𝐸
(0))(𝛿𝐸 − 𝜀𝑉 )𝜓𝐸 . (1.51)

На самом деле это исходное уравнение (1.48), переписанное в другом виде. Например, если исходное
уравнение было дифференциальным, а оператор Грина записан как интегральный оператор2, то новое
уравнение — интегральное.

Если подействовать на это уравнение слева оператором (𝐻̂0 − 𝐸(0)), используя (1.49) мы получаем

(𝐻̂0 − 𝐸(0))𝜓𝐸 = (𝐻̂0 − 𝐸(0))𝜓(0)⏟  ⏞  
0

+(𝐻̂0 − 𝐸(0))𝐺̂0(𝐸
(0)) (𝛿𝐸 − 𝜀𝑉 )𝜓𝐸⏟  ⏞  

⊥𝜓(0)

= (𝛿𝐸 − 𝜀𝑉 )𝜓𝐸 .

Таким образом, оператор (𝐻̂0 − 𝐸(0))𝐺̂0(𝐸
(0)) должен действовать как единичный оператор на подпро-

странстве, ортогональном 𝜓(0). Удобно выбрать оператор Грина в виде следующего самосопряжённого
оператора:

𝐺̂0(𝐸
(0)) = (1̂− 𝑃(0))(𝐻̂0 − 𝐸(0))−1(1̂− 𝑃(0)) =

{︂
(𝐻̂0 − 𝐸(0))−1 на векторах ⊥ℋ0,

0 на векторах из ℋ0
. (1.52)

Далее мы будем символически писать

𝐺̂0(𝐸
(0)) = (𝐻̂0 − 𝐸(0))−1,

имея в виду что оператор (𝐻̂0 − 𝐸(0))−1 продолжен нулем на подпространство ℋ0, на котором он не
определён (1.52), т. е. по определению

𝐺̂0(𝐸
(0))𝜓(0) = (𝐻̂0 − 𝐸(0))−1𝜓(0) = 0.

1.5 Теория возмущений через оператор Грина*

Вернёмся к уравнению (1.51) и введём сокращённое обозначение 𝐺̂0(𝐸
(0)) = 𝐺̂0

𝜓𝐸 = 𝜓(0) + 𝐺̂0 (𝛿𝐸 − 𝜀𝑉 )⏟  ⏞  
∼𝜀

𝜓𝐸 . (1.53)

2

𝐺̂0(𝐸
(0))𝜓(𝑥) =

ˆ
𝐺0(𝐸

(0), 𝑥, 𝑦)𝜓(𝑦) 𝑑𝑦.

Функция 𝐺0(𝐸(0);𝑥, 𝑦) называется функцией Грина.
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Второй член в правой части малая (порядка 𝜀) поправка. Это позволяет решать уравнение методом по-
следовательных приближений.

Для 𝜓𝐸 возьмём в качестве нормировочного условия равенство единицы проекции на 𝜓(0) (см. (1.30)):

⟨𝜓(0)|𝜓𝐸⟩ = 1. (1.54)

И отметим особо свойство (1.50) из которого с учётом (1.54) сразу выражается поправка к энергии:

⟨𝜓(0)|(𝛿𝐸 − 𝜀𝑉 )|𝜓𝐸⟩ = 0 ⇒ 𝛿𝐸 = 𝜀⟨𝜓(0)|𝑉 |𝜓𝐸⟩. (1.55)

Считаем, что поправки к энергии и волновой функции разлагаются в ряд по 𝜀:

𝛿𝐸 = 𝜀𝐸(1) + 𝜀2𝐸(2) + · · ·+ 𝜀𝑛𝐸(𝑛) + . . .

𝜓𝐸 = 𝜓(0) + 𝜀𝜓(1) + 𝜀2𝜓(2) + · · ·+ 𝜀𝑛𝜓(𝑛) + . . .

Из (1.54) сразу получаем поправку 𝑛-го порядка к энергии (1.33):

𝐸(𝑛) = ⟨𝜓(0)|𝑉 |𝜓(𝑛−1)⟩. (1.56)

Отсюда находим первую поправку к энергии (1.34):

𝐸(1) = ⟨𝜓(0)|𝑉 |𝜓(0)⟩.

Теперь исследуем волновую функцию. В нулевом порядке по 𝜀

𝜓𝐸 = 𝜓(0) +𝑂(𝜀).

Подставив это выражение в (1.53) находим волновую функцию в первом порядке:

𝜓𝐸 = 𝜓(0) + 𝜀 𝐺̂0𝐸
(1)𝜓(0)⏟  ⏞  
0

+𝜀 (−𝐺̂0 𝑉 𝜓
(0))⏟  ⏞  

𝜓(1)

+𝑂(𝜀2),

𝜓(1) = −𝐺̂0 𝑉 𝜓
(0).

Это даёт возможность найти уже вторую поправку к энергии:

𝐸(2) = ⟨𝜓(0)|𝑉 |𝜓(1)⟩ = −⟨𝜓(0)|𝑉 𝐺̂0 𝑉 |𝜓(0)⟩.

Волновая функция во втором порядке по 𝜀

𝜓𝐸 = 𝜓(0) + 𝐺̂0(𝜀𝐸
(1) − 𝜀𝑉 )(𝜓(0) + 𝜀𝜓(1)) = 𝜓(0) + 𝜀 (−𝐺̂0 𝑉 )𝜓(0)⏟  ⏞  

𝜓(1)

+𝜀2 𝐺̂0(𝐸
(1) − 𝑉 )𝜓(1)⏟  ⏞  
𝜓(2)

,

𝜓(2) = 𝐺̂0(𝐸
(1) − 𝑉 )(−𝐺̂0 𝑉 )𝜓(0) =

(︁
𝐺̂0𝑉 𝐺̂0𝑉 − 𝐸(1)𝐺̂2

0𝑉
)︁
𝜓(0).

Далее получаем уже 3-ю поправку к энергии

𝐸(3) = ⟨𝜓(0)|𝑉 |𝜓(2)⟩ = ⟨𝜓(0)|𝑉 𝐺̂0𝑉 𝐺̂0𝑉 − 𝐸(1)𝑉 𝐺̂2
0𝑉 |𝜓(0)⟩

и т. д.
В базисе невозмущённых стационарных состояний оператор Грина имеет следующие матричные эле-

менты:

(𝐺0)𝑏𝑐 = ⟨𝜓(0)
𝑏 |𝐺̂0(𝐸

(0)
𝑎 )|𝜓(0)

𝑐 ⟩ =

{︃
1

𝐸
(0)
𝑏 −𝐸(0)

𝑎

, 𝑏 = 𝑐 ̸= 𝑎,

0 иначе.

Подставляя эти матричные элементы в полученные в данном параграфе формулы, мы можем воспроиз-
вести формулы из параграфа 1.2.
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1.6 Оператор Грина в непрерывном спектре
Для уровня энергии непрерывного спектра (если этот уровень не является граничным) после внесения

достаточно малого возмущения разрешённый уровень энергии останется разрешённым, но соответствую-
щая волновая функция изменится. Это позволяет ставить задачу стационарной теории возмущений для
уровня непрерывного спектра следующим образом

𝐻̂ = 𝐻̂0 + 𝜀𝑉 ,

𝐻̂0𝜓
(0)
𝐸 = 𝐸𝜓

(0)
𝐸 уровень непрерывного спектра,

(𝐻̂0 + 𝜀𝑉 )𝜓𝐸 = 𝐸𝜓𝐸 найти 𝜓𝐸 если решена невозмущённая спектральная задача. (1.57)

Перепишем уравнение (1.57) вынеся возмущение в правую часть

(𝐻̂0 − 𝐸)𝜓𝐸 = −𝜀𝑉 𝜓𝐸⏟  ⏞  
рассмотрим как неоднородность

. (1.58)

Такая задача теории возмущений возникнет при рассмотрении 3-мерной задачи рассеяния (см. § 10.3
«Интегральное уравнение рассеяния»), там с её помощью мы получим борновское приближение теории
рассеяния.

Общее решение неоднородного линейного уравнения может быть представлено как сумма частного
решения неоднородного уравнения и общего решения однородного уравнения. В нашем случае

(𝐻̂0 − 𝐸(0))𝜓(0) = 0 — однородное уравнение

совпадает с невозмущённым уравнением Шрёдингера.
Частное решение неоднородного уравнения может быть получено из неоднородности действием неко-

торого линейного оператора (оператора Грина), который обозначим 𝐺̂0(𝐸) = 𝐺̂0. Тогда мы получаем

𝜓𝐸 = 𝜓(0) + 𝜀(−𝐺̂0𝑉 )𝜓𝐸 . (1.59)

Для состояний ортогональных к 𝜓(0)
𝐸

𝐺̂0 = 𝐺̂0(𝐸) = (𝐻̂0 − 𝐸)−1.

Но сейчас мы имеем дело с непрерывным спектром. Условие ⟨𝜓(0)
𝐸 |𝛿𝜓𝐸⟩ = 0 также как условие 𝜓(𝑥 =

0) = 0 — не выделяет замкнутого подпространства (для каждой частичной суммы ряда Фурье может
выполняться и при этом не выполняться для суммы ряда). В теории возмущений для дискретного уровня
возникали суммы по всем уровням, за исключением данного:

∑︀′
𝑏 =

∑︀
𝑏̸=𝑎. В непрерывном случае суммы

заменяются на интегралы, но интегрировать по прямой с выколотой точкой бессмысленно: одна точка
имеет меру нуль и вклада в интеграл не даёт.

Чтобы доопределить функцию (оператор) Грина задают правило обхода полюса. В физических задачах
правило обхода задаётся с помощью бесконечномалой мнимой добавки к энергии 𝐸 → 𝐸 + i0:

𝐺̂0 = 𝐺̂0(𝐸 + i0) = (𝐻̂0 − 𝐸 − i0)−1.

Ниже в параграфе 1.8 «Квазистационарные уровни» обход полюса осуществляется как раз таким образом.
Определившись в оператором Грина вернёмся к задаче (1.58).
В нулевом порядке по 𝜀 волновая функция совпадает с невозмущённой:

𝜓𝐸 = 𝜓
(0)
𝐸 +𝑂(𝜀).

Подставим это выражение в правую часть уравнения (1.59) и получим волновую функцию в первом
порядке по 𝜀:

𝜓𝐸 = 𝜓
(0)
𝐸 + 𝜀(−𝐺̂0𝑉 )𝜓

(0)
𝐸 +𝑂(𝜀2).

Во втором порядке получаем

𝜓𝐸 = 𝜓
(0)
𝐸 + 𝜀(−𝐺̂0𝑉 )𝜓

(0)
𝐸 + 𝜀2(−𝐺̂0𝑉 )2𝜓

(0)
𝐸 +𝑂(𝜀3).

Вид общего члена ряда уже ясен, так что мы можем написать ряд теории возмущений целиком:

𝜓𝐸 = 𝜓
(0)
𝐸 +𝜀(−𝐺̂0𝑉 )𝜓

(0)
𝐸 +𝜀2(−𝐺̂0𝑉 )2𝜓

(0)
𝐸 +· · ·+𝜀𝑛(−𝐺̂0𝑉 )𝑛𝜓

(0)
𝐸 +· · · =

(︃ ∞∑︁
𝑛=1

𝜀𝑛(−𝐺̂0𝑉 )𝑛

)︃
𝜓
(0)
𝐸 = (1̂+𝜀𝐺̂0𝑉 )−1𝜓

(0)
𝐸
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Мы столкнулись с операторной геометрической прогрессией как в главе 0.
(**?/) Каков смысл ряда?

(1̂+𝜀𝐺̂0𝑉 )−1 =
[︁
𝐺̂0

(︁
𝐺̂−1

0 + 𝜀𝑉
)︁]︁−1

=
(︁
𝐺̂−1

0 + 𝜀𝑉
)︁−1

𝐺̂−1
0 =

(︁
𝐻̂0 + 𝜀𝑉 − 𝐸 − i0

)︁−1

⏟  ⏞  
𝐺̂(𝐸+i0)

(𝐻̂0−𝐸−i0) = 𝐺̂(𝐻̂0−𝐸−i0).

Здесь 𝐺̂ = 𝐺̂(𝐸 + i0) — это тоже оператор Грина, но уже построенный по гамильтониану 𝐻̂ = 𝐻̂0 + 𝜀𝑉 .
Можно переписать исходную задачу (1.58) в виде(︁

𝐻̂0 + 𝜀𝑉 − 𝐸 − i0
)︁
𝜓𝐸 =

(︁
𝐻̂0 − 𝐸 − i0

)︁
𝜓
(0)
𝐸

После это мы делим уравнение на оператор в из левой части и получаем

𝜓𝐸 =
(︁
𝐻̂0 + 𝜀𝑉 − 𝐸 − i0

)︁−1

⏟  ⏞  
𝐺̂

(︁
𝐻̂0 − 𝐸 − i0

)︁
𝜓
(0)
𝐸 = (1̂ + 𝜀𝐺̂0𝑉 )−1𝜓

(0)
𝐸 .

Выражения получились, конечно, красивые, но математически плохо определённые. Их более строгим
определением (но всё равно на физическом уровне строгости) можно считать предшествовавшие выклад-
ки.(/**?)

1.7 От оператора Грина к функции Грина-

Рассмотрим уравнение на оператор Грина в непрерывном спектре

(𝐻̂ − 𝐸 − i0)𝐺̂ = 1̂. (1.60)

Чтобы задать оператор Грина достаточно определить его действие на все векторы какого-либо базиса.
Возьмём координатный базис состоящий из векторов3 |r′⟩ = |𝜓r′⟩ и подействуем соответствующими кет-
векторами справа на уравнение (1.60)

(𝐻̂ − 𝐸 − i0)𝐺̂|r′⟩ = 1̂|r′⟩. (1.61)

Нам надо найти векторы состояния вида 𝐺̂|r′⟩. Для этого разложим уравнение (1.61) по координатному
базису:

⟨r|(𝐻̂ − 𝐸 − i0)𝐺̂|r′⟩ = ⟨r|1̂|r′⟩ = δ(r− r′). (1.62)

Левая часть равенства — это действие оператора (𝐻̂ − 𝐸 − i0) на кет-вектор 𝐺̂|r′⟩ в координатном пред-
ставлении

(𝐻̂ − 𝐸 − i0)𝐺(
↓
r, r′) = δ(r− r′). (1.63)

Здесь
𝐺(r, r′) = ⟨r|𝐺̂|r′⟩ (1.64)

— это функция Грина. Стрелка в формуле (1.63) показывает на переменную, на которую действует опе-
ратор (𝐻̂ − 𝐸 − i0), точнее оператор действует на функцию одной переменной r, которая получается из
функции Грина (функции двух переменных) фиксированием переменной r′.

Пусть гамильтониан, а вместе с ним и оператор (𝐻̂ − 𝐸 − i0), инвариантен по отношению к коорди-
натным сдвигам, то есть коммутирует с оператором импульса p̂. Тогда функцию Грина можно искать в
виде

𝐺(r, r′) = 𝐺(r− r′),

оператор Гамильтона выражается как функция от оператора импульса4 𝐻̂ = 𝐻(p̂), и уравнение (1.63)
приобретает вид

(𝐻(p̂)− 𝐸 − i0)𝐺(r− r′) = δ(r− r′). (1.65)

3Базисные векторы координатного базиса (размерность пространства пока произвольная!) в координатном представлении
имеют вид 𝜓r′ (r) = ⟨r|r′⟩ = δ(r− r′).

4Мы считаем, что полный набор коммутирующих наблюдаемых для рассматриваемой системы — это r или p, например
рассматривается частица, которая не имеет внутренних степеней свободы.
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Re 𝑝

Im 𝑝

0 𝑞

−𝑞

ℛ → ∞

×𝑞 + i0

×−(𝑞 + i0)

∘ i|𝑞|

∘−i|𝑞|

Рис. 1.1: Контуры интегрирования в формуле (1.71). При 𝑥 > 0 контур замыкается через верхнюю полуплоскость
(шриховой дугой), а при 𝑥 < 0 — через нижнюю (пунктирной дугой). Смещённые положения полюсов при 𝐸 > 0
обозначены крестиками (×). При 𝐸 < 0 полюсы ±i|𝑞| располагаются на мнимой оси (кружки ∘)

Определим для функции Грина преобразование Фурье5:

𝐺̃(p) =

ˆ
e−ipr

ℏ 𝐺(r) 𝑑r. (1.66)

Теперь уравнение (1.65) перепишется как алгебраическое уравнение

(𝐻(p)− 𝐸 − i0)𝐺̃(p) = 1, (1.67)

которое легко решается

𝐺̃(p) =
1

𝐻(p)− 𝐸 − i0
. (1.68)

К координатному представлению мы можем вернуться с помощью обратного преобразования Фурье:

𝐺(r) =

ˆ
ei

pr
ℏ 𝐺(p)

𝑑p

(2𝜋ℏ)𝐷
=

ˆ
ei

pr
ℏ

𝐻(p)− 𝐸 − i0

𝑑p

(2𝜋ℏ)𝐷
, (1.69)

где 𝐷 — размерность пространства.
Для свободной нерелятивистской частицы

𝐻(p) =
p2

2𝑚
,

при этом удобно параметризовать энергию с помощью параметра 𝑞, имеющего размерность импульса:

𝐸 =
𝑞2

2𝑚
, 𝑞 > 0.

5Преобразование Фурье для функции Грина мы определяем иначе, чем для волновой функции

𝜓(p) = ⟨r|𝜓⟩ =
ˆ

e−ipr
ℏ

(2𝜋ℏ)𝐷/2
𝜓(r) 𝑑r.
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Re𝐸𝑏

Im𝐸𝑏

𝐸0
𝑎

Рис. 1.2: Обход полюса

𝐺(r) =

ˆ
ei

pr
ℏ

𝑝2

2𝑚 − 𝑞2

2𝑚 − i0

𝑑p

(2𝜋ℏ)𝐷
= 2𝑚

ˆ
ei

pr
ℏ

(𝑝− 𝑞 − i0)(𝑝+ 𝑞 + i0)

𝑑p

(2𝜋ℏ)𝐷
. (1.70)

Знаки перед i0 в выражении (𝑝− 𝑞− i0)(𝑝+ 𝑞+ i0) выбраны так, чтобы давать 𝑝2 − 𝑞2 − i0 (то есть давать
правильный обход полюсов в точках ±𝑞) в случае 𝐸 > 0 и 𝑞 > 0. В случае 𝐸 < 0 полюсы расположены на
мнимой оси и добавки ±i0 уже не важны (не нужны, но и не мешают).

Вычислим явно функцию Грина 𝐺(r) для размерностей пространства 𝐷 = 1 (случай 𝐷 = 3 будет
рассмотрен в § 10.3 «Интегральное уравнение рассеяния»).

При 𝐷 = 1 (r = 𝑥, p = 𝑝)

𝐺(𝑥) = 2𝑚

ˆ
ei

𝑝𝑥
ℏ

(𝑝− 𝑞 − i0)(𝑝+ 𝑞 + i0)

𝑑𝑝

2𝜋ℏ
. (1.71)

Контур интегрирования замыкаем через верхнюю полуплоскость при 𝑥 > 0 и через нижнюю полуплос-
кость при 𝑥 < 0 (см. рис. 1.1), потому что экспонента ei

𝑝𝑥
ℏ затухает при Im 𝑝𝑥 > 0. Так что при 𝑥 > 0

(𝑥 < 0) вклад даёт полюс в точке ±(𝑞 + i0), причём поскольку полюс обходится против (по) часовой
стрелке, вычет берётся со знаком ±.

Получаем при 𝑥 > 0 (верхние знаки) и при 𝑥 < 0 нижние знаки функцию Грина при 𝐸 > 0

𝐺(𝑥) = 2𝑚

(︂
±2𝜋i

e±i 𝑞𝑥ℏ

±2𝑞

1

2𝜋ℏ

)︂
⏟  ⏞  

±вычет

= i𝑚
ei

𝑞|𝑥|
ℏ

𝑞ℏ
. (1.72)

При 𝐸 < 0 работает эта же формула, только надо считать, что 𝑞 = i|𝑞|, т. е. лежит на положительной
полуоси Im 𝑝:

𝐺(𝑥) = 2𝑚

(︃
±2𝜋i

e±i
i|𝑞|𝑥

ℏ

±2i|𝑞|
1

2𝜋ℏ

)︃
⏟  ⏞  

±вычет

= 𝑚
e−

|𝑞|·|𝑥|
ℏ

𝑞ℏ
. (1.73)

Вид функции 𝐺(𝑥) при 𝐸 < 0 соответствует виду связанного состояния частицы в 1-мерной δ-яме, для
которой 𝐸 — стационарный уровень. Легко убедиться (см. упражнение 4), что это совпадение не случайно.

1.8 Квазистационарные уровни

Пусть для невозмущённого гамильтониана дискретный уровень энергии попал внутрь непрерывного
спектра. Такое возможно, например, при объединении двух невзаимодействующих подсистем.

𝐸(2)
𝑎 =

∑︁
𝑏̸=𝑎

|𝑉𝑏𝑎|2

𝐸
(0)
𝑎 − 𝐸

(0)
𝑏

+

ˆ
|𝑉𝑏𝑎|2 𝑑𝑏

𝐸
(0)
𝑎 − 𝐸

(0)
𝑏

=
∑︁
𝑏 ̸=𝑎

|𝑉𝑏𝑎|2

𝐸
(0)
𝑎 − 𝐸

(0)
𝑏

+

ˆ
|𝑉𝑏𝑎|2 𝜌(𝐸𝑏) 𝑑𝐸𝑏

𝐸
(0)
𝑎 − 𝐸𝑏

.

Здесь 𝜌(𝐸𝑏) — плотность числа уровней с энергией близкой к 𝐸𝑏. Если уровень 𝐸(0)
𝑎 попадает внутрь непре-

рывного спектра, то он попадает внутрь области интегрирования по энергии 𝐸𝑏 и в интеграле появляется
полюс.

При обходе полюса снизу, как на рис. 1.2 интеграл разбивается на два слагаемых: интеграл в смысле
главного значения (

ffl
) от интегрирования по вещественной оси и половина вычета от интегрирования по
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половине окружности6:

𝐸(2)
𝑎 =

∑︁
𝑏̸=𝑎

|𝑉𝑏𝑎|2

𝐸
(0)
𝑎 − 𝐸

(0)
𝑏

+

 
|𝑉𝑏𝑎|2 𝜌(𝐸𝑏) 𝑑𝐸𝑏

𝐸
(0)
𝑎 − 𝐸𝑏⏟  ⏞  

вещественная поправка

−i𝜋𝜌(𝐸𝑎)|𝑉𝑏𝑎|2𝐸𝑏=𝐸
(0)
𝑎⏟  ⏞  

мнимая поправка

.

Поскольку уровни энергии для любого эрмитового гамильтониана могут быть только вещественными,
появление мнимой поправки требует интерпретации.

Посмотрим как будет вести себя со временем «стационарный» уровень с комплексной энергией

𝐸 = 𝐸0 − i
𝛾ℏ
2
.

𝜓𝐸(𝑡) = e−i𝐸𝑡
ℏ 𝜓𝐸(0) = e−i

𝐸0𝑡
ℏ e−

𝛾𝑡
2 𝜓𝐸(0). (1.74)

Вещественная экспонента приводит к тому, что скалярный квадрат такого состояния не сохраняется со
временем:

‖𝜓𝐸(𝑡)‖2 = e−𝛾𝑡 ‖𝜓𝐸(0)‖2.

Поскольку скалярный квадрат состояния соответствует суммарной вероятности нахождения системы в
таком состоянии, мнимая добавка даёт нам экспоненциальное затухание этой вероятности со временем с
временем жизни

𝜏 =
1

𝛾
.

Поскольку мнимая добавка возникла за счёт взаимодействия невозмущённого дискретного уровня с со-
стояниями непрерывного спектра (которые не могут быть нормированы на 1), вероятность «утекает» из
дискретного состояния в состояния непрерывный спектр и, в конечном итоге, утекает на бесконечность
(туда, где расходится интеграл для скалярного квадрата состояния непрерывного спектра). Такое состо-
яние уже не будет стационарным, но на временах малых по сравнению с 𝜏 оно ведёт себя почти как
стационарное (квазистационарное).

Фурье-образ для временно́й зависимости квазистационарного состояния (1.74) имеет характерную ши-
рину 𝛾, соответственно мнимая поправка оказывается связана также с характерной шириной уровня

𝛿𝐸 =
𝛾ℏ
2
.

Настоящий стационарный уровень имеет нулевую ширину, тогда как квазистационарный уровень — ко-
нечную ширину 𝛿𝐸.

(!!) На самом деле многие состояния, которые мы рассматривали как стационарные при более де-
тальном рассмотрении оказываются квазистационарными. Например, все уровни энергии атома водорода
кроме основного имеют конечное время жизни, за счёт излучения фотонов (взаимодействия с электро-
магнитным полем).

(*) Может показаться, что мы применили стационарную теорию за пределами её области применимо-
сти. Более правильно было бы рассмотреть распад квазистационарного уровня с точки зрения нестацио-
нарной теории возмущений. Это мы сделаем в следующей главе, причём в первом порядке нестационарной
теории возмущений мы получим тот же результат, что и здесь:

𝛾ℏ
2

= 𝜋𝜌(𝐸𝑎)|𝑉𝑏𝑎|2𝐸𝑏=𝐸
(0)
𝑎
. (1.75)

Этот результат известен как золотое правило Ферми.
(**) Мы убедились, что во многих случаях уровень энергии имеет маленькую отрицательную мни-

мую добавку. Между тем, доопределяя оператор Грина в непрерывном спектре мы вводили для энергии
малую положительную мнимую добавку, что в свете рассмотрения квазистационарных уровней вы-
глядит противоестественно. Чтобы примирить одно с другим посмотрим на эту добавку с другой стороны.
Эту мнимую добавку можно рассматривать как добавку не к энергии 𝐸, для которой считается оператор
Грина, а к гамильтониану 𝐻̂0, к которому получается уже мнимая отрицательная добавка:

𝐺̂0 = ([𝐻̂0 − i0] + 𝐸)−1.

6Мы по существу вывели формулу Сохоцкого

1

𝑥+ i0
= v.p.

1

𝑥
− i𝜋 δ(𝑥).

Эту формулу называют ещё формулой Племеля, но Сохоцкий получил эквивалентный результат в 1868 году, а Племель —
в 1908, т. е. на 40 лет позже (понятно, что ни Сохоцкий ни Племель не использовали дельта-функцию Дирака).
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Можно сказать, что мы сделали все уровни нового гамильтониана 𝐻̂ ′
0 = 𝐻̂0 − i0 слегка квазистационар-

ными.
В некоторых случаях квазистационарные состояния можно исследовать с помощью квазиклассическо-

го приближения, см. КПКМ-13.5.6 «Квазистационарные состояния в квазиклассике» (стр. 410).
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Глава 2

Представление взаимодействия

2.1 Определение представления взаимодействия
Представим оператор Гамильтона в виде суммы двух слагаемых — невозмущённого гамильтониана и

возмущения:
𝐻̂(𝑡) = 𝐻̂0(𝑡) + 𝑉 (𝑡). (2.1)

Для полного гамильтониана 𝐻̂ имеется полный оператор эволюции 𝑈̂(𝑡1, 𝑡0):

iℏ
𝜕

𝜕𝑡1
𝑈̂(𝑡1, 𝑡0) = 𝐻̂(𝑡1) 𝑈̂(𝑡1, 𝑡0), 𝑈̂(𝑡0, 𝑡0) = 1̂. (2.2)

Для невозмущённого гамильтониана 𝐻̂0 имеется невозмущённый оператор эволюции 𝑈̂0(𝑡1, 𝑡0):

iℏ
𝜕

𝜕𝑡1
𝑈̂0(𝑡1, 𝑡0) = 𝐻̂0(𝑡1) 𝑈̂0(𝑡1, 𝑡0), 𝑈̂0(𝑡0, 𝑡0) = 1̂. (2.3)

Для сопряжённого невозмущённого оператора эволюции уравнение получается с помощью эрмитова со-
пряжения: (︂

iℏ
𝜕

𝜕𝑡1
𝑈̂0(𝑡1, 𝑡0)

)︂†

= −iℏ
𝜕

𝜕𝑡1
𝑈̂†
0 (𝑡1, 𝑡0) = 𝑈̂†

0 (𝑡1, 𝑡0) 𝐻̂
†
0(𝑡1) = 𝑈̂†

0 (𝑡1, 𝑡0) 𝐻̂0(𝑡1). (2.4)

Далее если оператор эволюции имеет только один аргумент, это означает, что второй аргумент зафик-
сирован:

𝑈̂(𝑡) := 𝑈̂(𝑡, 𝑡0), 𝑈̂0(𝑡) := 𝑈̂0(𝑡, 𝑡0), 𝑈̂в(𝑡) := 𝑈̂в(𝑡, 𝑡0). (2.5)

Примем по определению, что наблюдаемые эволюционируют так же, как в гайзенберговском представ-
лении для невозмущённого гамильтониана:

𝑑0𝐹в

𝑑𝑡
=

(︃
𝜕𝐹

𝜕𝑡

)︃
в

+ {𝐹в, 𝐻̂0}ℏ =
𝜕𝐹в

𝜕𝑡
+

1

iℏ
[𝐹 , 𝐻̂0]; 𝐹в(𝑡) = 𝑈̂†

0 (𝑡)𝐹ш(𝑡) 𝑈̂0(𝑡). (2.6)

Здесь 𝑑0
𝑑𝑡 полная производная по времени, определяемая с помощью невозмущённого гамильтониана 𝐻̂0.

(!) Индекс «в» означающий представление взаимодействия мы будем писать сверху или снизу в зави-
симости от удобства. Никакого различия верхнее или нижнее положение индекса «в» не подразумевает.

Вклад возмущения учитывается через эволюцию состояния.
Для вектора состояния (волновой функции):

𝜓в(𝑡) = 𝑈̂†
0 (𝑡)𝜓ш(𝑡) = 𝑈̂†

0 (𝑡) 𝑈̂(𝑡)⏟  ⏞  
𝑈̂в(𝑡)

𝜓ш(0). (2.7)

(*) Для матрицы плотности:

𝜌в(𝑡) = 𝑈̂†
0 (𝑡) 𝜌ш(𝑡) 𝑈̂0(𝑡) = 𝑈̂†

0 (𝑡) 𝑈̂(𝑡)⏟  ⏞  
𝑈̂в(𝑡)

𝜌ш(0) 𝑈̂
†(𝑡) 𝑈̂0(𝑡)⏟  ⏞  
𝑈̂†

в (𝑡)

. (2.8)

Выражение
𝑈̂в(𝑡) = 𝑈̂†

0 (𝑡) 𝑈̂(𝑡) (2.9)
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называют оператором эволюции в представлении взаимодействия. Если его продифференцировать по
времени, используя уравнения (2.2) и (2.4), получаем

iℏ
𝜕

𝜕𝑡
𝑈̂в(𝑡) = iℏ

𝜕𝑈̂†
0 (𝑡)

𝜕𝑡
𝑈̂(𝑡) + 𝑈̂†

0 (𝑡) iℏ
𝜕𝑈̂(𝑡)

𝜕𝑡
=

= 𝑈̂†
0 (𝑡)(−𝐻̂0) 𝑈̂(𝑡) + 𝑈̂†

0 (𝑡) (𝐻̂0(𝑡) + 𝑉 (𝑡))𝑈̂(𝑡) =

= 𝑈̂†
0 (𝑡)𝑉 (𝑡) 𝑈̂(𝑡) = 𝑈̂†

0 (𝑡)𝑉 (𝑡) 𝑈̂0(𝑡)⏟  ⏞  
𝑉в(𝑡)

𝑈̂в(𝑡).

Мы получили уравнение на оператор эволюции в представлении взаимодействия:

iℏ
𝜕

𝜕𝑡1
𝑈̂в(𝑡1, 𝑡0) = 𝑉в(𝑡1) 𝑈̂в(𝑡1, 𝑡0), 𝑈̂в(𝑡0, 𝑡0) = 1̂. (2.10)

Комбинируя уравнения (2.7) и (2.10) получаем уравнение Шрёдингера в представлении взаимодей-
ствия

iℏ
𝜕𝜓в

𝜕𝑡
= 𝑉в(𝑡)𝜓в. (2.11)

(*) Матрица плотности эволюционирует в соответствии с уравнением фон Неймана в представлении
взаимодействия, в котором роль гамильтониана играет оператор возмущения в представлении взаимо-
действия:

𝜕𝜌в

𝜕𝑡
= −{𝜌в, 𝑉в}ℏ =

i

ℏ
[𝜌в, 𝑉в]. (2.12)

Если вспомнить, что оператор эволюции — аналог матрицы вращения, то представление взаимодей-
ствия отличается тем, что все объекты задаются во вращающемся базисе так, что компенсируется вклад
в эволюцию (вращение) состояний невозмущённого гамильтониана.

(!) Если положить 𝐻̂0 = 𝐻̂, 𝑉 = 0, то представление взаимодействия совпадёт с представлением
Гайзенберга.

(!) Если положить 𝐻̂0 = 0, 𝑉 = 𝐻̂, то представление взаимодействия совпадёт с представлением
Шрёдингера.

Название «представление взаимодействия» связано с тем, что во многих задачах возмущение 𝑉 (𝑡)
соответствует взаимодействию подсистем, которые для невозмущённого гамильтониана 𝐻̂0(𝑡) были невза-
имодействующими.

2.2 Прецессия спина во вращающемся поле

Обычно представление взаимодействия используется в нестационарной теории возмущений, когда 𝑉 (𝑡)
— малая поправка к «хорошему» невозмущённому гамильтониану 𝐻0(𝑡). Однако мы можем использовать
представление взаимодействия вне зависимости от теории возмущений, в некоторых случаях оно позволя-
ет аналитически решить временное уравнение Шрёдингера. Такого рода пример мы сейчас рассмотрим.

Пусть имеется частица со спином 𝑠 и магнитным моментом ˆ⃗𝜇 = 𝜇0
ˆ⃗𝑠. Эволюция спина в магнитном

поле B описывается гамильтонианом
𝐻̂ = −(ˆ⃗𝜇,B).

Рассмотрим случай, когда магнитное поле вращается вокруг оси 𝑧 с угловой скоростью Ω:

B = (𝑏 cos(Ω𝑡), 𝑏 sin(Ω𝑡), 𝐵0).

Соответствующий гамильтониан

𝐻̂ = −(ˆ⃗𝜇,B) = − 𝜇0𝑏⏟ ⏞ 
ℏ𝜔

(cos(Ω𝑡)𝑠𝑥 + sin(Ω𝑡)𝑠𝑦)− 𝜇0𝐵0⏟  ⏞  
ℏ𝜔0

𝑠𝑧 = −ℏ𝜔(cos(Ω𝑡)𝑠𝑥 + sin(Ω𝑡)𝑠𝑦)− ℏ𝜔0𝑠𝑧.

Гамильтониан оказался записан через три параметра с размерностью частоты: Ω, 𝜔, 𝜔0.
Гамильтониан не является автономным (явно зависит от времени), поэтому записать оператор эволю-

ции через матричную экспоненту мы не можем.
Попробуем использовать представление взаимодействия. Для этого нам понадобится разбить гамиль-

тониан на два слагаемых: 𝐻̂ = 𝐻̂0 + 𝑉 . Причём удобно провести разбиение так, чтобы невозмущённый
гамильтониан 𝐻̂0 не зависел от времени.
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2.2.1 Первая попытка решения

Кажется естественным положить

𝐻̂0 = −ℏ𝜔0𝑠𝑧 = −ℏ𝜔0𝑠
в
𝑧, (2.13)

𝑉 = −ℏ𝜔(cos(Ω𝑡)𝑠𝑥 + sin(Ω𝑡)𝑠𝑦). (2.14)

Тогда невозмущённый оператор эволюции

𝑈̂0(𝑡) = e−i
𝐻̂0𝑡
ℏ = ei𝜔0𝑡𝑠𝑧

— это спиновый оператор поворота вокруг оси 𝑧 на угол −𝜔0𝑡. Таким образом, при переходе в представ-
ление взаимодействия на вращение магнитного поля вокруг оси 𝑧 с частотой Ω накладывается вращение
вокруг той же оси с частотой 𝜔0.

Некоторые сомнения могут быть лишь по поводу направления вращений: складываются угловые ско-
рости или вычитаются. Чтобы разрешить эти сомнения вычислим производную по времени от возмущения
в представлении взаимодействия.

Выпишем гамильтонианы в представлении взаимодействия.
Невозмущённый гамильтониан коммутирует с невозмущённым оператором эволюции (который явля-

ется его экспонентой), поэтому в представлении взаимодействия он не меняется:

𝐻̂в
0 = 𝐻̂0 = −ℏ𝜔0𝑠𝑧 = −ℏ𝜔0𝑠

в
𝑧,

Оператор возмущения выражается через проекции спина. Чтобы перейти к представлению взаимодей-
ствия для возмущения мы просто берём проекции спина в представлении взаимодействия:

𝑉в(𝑡) = −ℏ𝜔(cos(Ω𝑡) 𝑠в𝑥(𝑡) + sin(Ω𝑡) 𝑠в𝑦(𝑡)).

Для временно́й эволюции проекций спина в представлении взаимодействия получаем

𝑑0𝑠
в
𝑥

𝑑𝑡
=

1

iℏ
[𝑠в𝑥, 𝐻̂0] = i𝜔0 [𝑠

в
𝑥, 𝑠

в
𝑧]⏟  ⏞  

−i𝑠в𝑦

= 𝜔0𝑠
в
𝑦,

𝑑0𝑠
в
𝑦

𝑑𝑡
=

1

iℏ
[𝑠в𝑦, 𝐻̂0] = i𝜔0 [𝑠

в
𝑦, 𝑠

в
𝑧]⏟  ⏞  

i𝑠в𝑥

= −𝜔0𝑠
в
𝑥.

Получившаяся система соответствует вращению вокруг оси 𝑧, с учётом начальных условий

𝑠в𝑥(0) = 𝑠ш𝑥 = 𝑠𝑥, 𝑠в𝑦(0) = 𝑠ш𝑦 = 𝑠𝑦

получаем временну́ю зависимость

𝑠в𝑥(𝑡) = 𝑠𝑥 cos(𝜔0𝑡) + 𝑠𝑦 sin(𝜔0𝑡),

𝑠в𝑦(𝑡) = −𝑠𝑥 sin(𝜔0𝑡) + 𝑠𝑦 cos(𝜔0𝑡).

Таким образом

𝑉в(𝑡) = −ℏ𝜔 {cos(Ω𝑡) [𝑠𝑥 cos(𝜔0𝑡) + 𝑠𝑦 sin(𝜔0𝑡)] + sin(Ω𝑡) [−𝑠𝑥 sin(𝜔0𝑡) + 𝑠𝑦 cos(𝜔0𝑡)]} =

= −ℏ𝜔 {[cos(Ω𝑡) cos(𝜔0𝑡)− sin(Ω𝑡) sin(𝜔0𝑡)]𝑠𝑥 + [cos(Ω𝑡) sin(𝜔0𝑡) + sin(Ω𝑡) cos(𝜔0𝑡)]𝑠𝑦} =

= −ℏ𝜔 {cos([Ω + 𝜔0]𝑡) 𝑠𝑥 + sin([Ω + 𝜔0]𝑡) 𝑠𝑦} .

Возмущение в представлении взаимодействия по-прежнему зависит от времени, кроме исключитель-
ного случая Ω = −𝜔0. В этом исключительном случае

𝑉в(𝑡) = −ℏ𝜔 𝑠𝑥.

Оператор эволюции в представлении взаимодействия в этом случае — спиновый оператор поворота вокруг
оси 𝑥 на угол −𝜔𝑡:

𝑈̂в(𝑡) = e−i𝑉в𝑡
ℏ = ei𝜔𝑡𝑠𝑥 .
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2.2.2 Вторая попытка решения

Если внимательно рассмотреть первую попытку решения, то мы видим, что при вращении вокруг
оси 𝑧 преобразуются компоненты спина по осям 𝑥 и 𝑦, а компонента по оси 𝑧 остаётся неизменной. Это
позволяет придти к выводу, что разбиение гамильтониана на невозмущённую часть (2.13) и возмущение
(2.14) неоптимально.

Удобнее выбрать такой невозмущённый гамильтониан, чтобы он при переходе к представлению взаи-
модействия в точности компенсировал вращение магнитного поля.

𝐻̂0 = ℏΩ𝑠𝑧 = ℏΩ𝑠в𝑧,

𝑉 = −ℏ𝜔(cos(Ω𝑡)𝑠𝑥 + sin(Ω𝑡)𝑠𝑦)− ℏ(𝜔0 +Ω)𝑠𝑧.

В представлении взаимодействия вращение магнитного поля полностью компенсируется:

𝑉 в = −ℏ𝜔𝑠𝑥 − ℏ(𝜔0 +Ω)𝑠𝑧.

Оператор эволюции в представлении взаимодействия в этом случае — спиновый оператор поворота с
угловой скоростью 𝜔⃗ = (−𝜔, 0,−𝜔0 − Ω):

𝑈̂в(𝑡) = e−i𝑉в𝑡
ℏ = ei𝑡(𝜔𝑠𝑥+[𝜔0+Ω]𝑠𝑧).

Полный оператор эволюции имеет вид

𝑈̂(𝑡) = 𝑈̂0(𝑡)𝑈̂в(𝑡) = e−iΩ𝑡𝑠𝑧ei𝑡(𝜔𝑠𝑥+[𝜔0+Ω]𝑠𝑧).

Направление среднего спина вращается заметая поверхность конуса с осью 𝜔⃗ = (−𝜔, 0,−𝜔0 − Ω), в свою
очередь конус вращается с угловой скоростью Ω⃗ = (0, 0,Ω).

В данной задаче использование представления взаимодействия соответствует переходу во вращающу-
юся систему отсчёта.

2.3 Т-экспонента

Рассмотрим уравнение на оператор эволюции в представлении взаимодействия (2.10):

𝜕

𝜕𝑡
𝑈̂в(𝑡, 𝑡0) = − i

ℏ
𝑉в(𝑡) 𝑈̂в(𝑡, 𝑡0), 𝑈̂в(𝑡0, 𝑡0) = 1̂. (2.15)

Мы можем взять от уравнения (2.15) определённый интеграл по времени от 𝑡0 до 𝑡1 и переписать уравнение
(2.15) в виде интегрального уравнения

𝑈̂в(𝑡, 𝑡0) = 1̂− i

ℏ

𝑡ˆ

𝑡0

𝑉в(𝑡1) 𝑈̂в(𝑡1, 𝑡0) 𝑑𝑡1. (2.16)

Интегральное уравнение (2.16) можно решать методом последовательных приближений, разлагая ре-
шение по степеням 𝑉 . С точностью до нулевого порядка

𝑈̂ (0)
в (𝑡, 𝑡0) = 1̂.

Если мы знаем оператор эволюции с точностью до 𝑛-го порядка, мы можем получить следующее (𝑛+1)-е
приближение подставляя в правую часть уравнения (2.16)

𝑈̂ (𝑛+1)
в (𝑡, 𝑡0) = 1̂− i

ℏ

𝑡ˆ

𝑡0

𝑉в(𝑡1) 𝑈̂
(𝑛)
в (𝑡1, 𝑡0) 𝑑𝑡1. (2.17)

Выпишем первые два приближения

𝑈̂ (1)
в (𝑡, 𝑡0) = 1̂− i

ℏ

𝑡ˆ

𝑡0

𝑉в(𝑡1) 𝑑𝑡1. (2.18)
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𝑈̂ (2)
в (𝑡, 𝑡0) = 1̂− i

ℏ

𝑡ˆ

𝑡0

𝑉в(𝑡1)

⎛⎝1̂− i

ℏ

𝑡1ˆ

𝑡0

𝑉в(𝑡2) 𝑑𝑡2

⎞⎠ 𝑑𝑡1 = (2.19)

= 1̂− i

ℏ

𝑡ˆ

𝑡0

𝑉в(𝑡1) 𝑑𝑡1 +

(︂
− i

ℏ

)︂2
𝑡ˆ

𝑡0

𝑑𝑡1

𝑡1ˆ

𝑡0

𝑑𝑡2 𝑉в(𝑡1)𝑉в(𝑡2)

Легко видеть, что каждое следующее приближение добавляет к предыдущим членам новый интеграл
на единицу большей кратности. Весь ряд разложения по степеням 𝑉 имеет вид (мы перенумеровали
переменные интегрирования 𝑡1, . . . , 𝑡𝑛 в обратном порядке)

𝑈̂в(𝑡, 𝑡0) = 1̂ +

∞∑︁
𝑛=1

(︂
− i

ℏ

)︂𝑛 𝑡ˆ

𝑡0

𝑑𝑡𝑛

𝑡𝑛ˆ

𝑡0

𝑑𝑡𝑛−1 . . .

𝑡2ˆ

𝑡0

𝑑𝑡1

⏟  ⏞  
𝑛 раз

𝑉в(𝑡𝑛)𝑉в(𝑡𝑛−1) . . . 𝑉в(𝑡1)⏟  ⏞  
𝑛 раз

. (2.20)

В члене номер 𝑛 область интегрирования определяется неравенствами

𝑡⏟ ⏞ 
const

⩾ 𝑡𝑛 ⩾ 𝑡𝑛−1 ⩾ · · · ⩾ 𝑡1⏟  ⏞  
переменные интегрирования

⩾ 𝑡0⏟ ⏞ 
const

. (2.21)

В нашей области интегрирования (кроме граничных точек) переменные 𝑡𝑘 всегда убывают по мере роста
𝑘. Если бы мы интегрировали по 𝑛-мерному кубу, т. е. от 𝑡0 до 𝑡 по всем переменным 𝑡1, 𝑡2, . . . 𝑡𝑛, то в
разных частях куба (за исключением граничных точек) переменные 𝑡1, 𝑡2, . . . 𝑡𝑛 в порядке убывания вы-
страивались бы всеми возможными 𝑛! способами. Отсюда видно, что область интегрирования составляет
1
𝑛! часть 𝑛-мерного куба.

При 𝑛 = 1 — это отрезок, при 𝑛 = 2 — треугольник ( 1
2! = 1

2 квадрата), при 𝑛 = 3 — это тетраэдр
( 1
3! =

1
6 куба) и т. д. При произвольном 𝑛 область интегрирования — 𝑛-мерный симплекс, составляющий

1
𝑛! часть 𝑛-мерного куба.

Если бы оператор 𝑉в(𝑡) был перестановочен сам с собой в разные моменты времени, т. е. если бы
[𝑉в(𝑡1), 𝑉в(𝑡2)] = 0, то мы бы могли заменить интегрирование по симплексу интегрированием по кубу,
добавив множитель 1

𝑛! . Если же оператор 𝑉в(𝑡) некоммутирует сам с собой в разные моменты време-
ни, то чтобы перейти к интегрированию по кубу нам придётся в каждом из 𝑛! симплексов, на которые
разбивается куб, по-разному упорядочивать множители 𝑉в(𝑡𝑛), 𝑉в(𝑡𝑛−1), . . . , 𝑉в(𝑡1).

Введём операцию Т-упорядочения, которая расставляет множители в порядке убывания временно́го
аргумента. Так для двух множителей

̂︀𝑇𝑉в(𝑡2)𝑉в(𝑡1) =

{︂
𝑉в(𝑡2)𝑉в(𝑡1), 𝑡2 ⩾ 𝑡1,

𝑉в(𝑡1)𝑉в(𝑡2), 𝑡1 ⩾ 𝑡2.

В общем случае̂︀𝑇𝑉в(𝑡𝑛)𝑉в(𝑡𝑛−1) . . . 𝑉в(𝑡1) = 𝑉в(𝑡𝑖𝑛)𝑉в(𝑡𝑖𝑛−1) . . . 𝑉в(𝑡𝑖1), {𝑖1, . . . , 𝑖𝑛} = {1, . . . , 𝑛}, 𝑡𝑖𝑛 ⩾ 𝑡𝑖𝑛−1 ⩾ · · · ⩾ 𝑡𝑖1 .
(2.22)

С помощью Т-упорядочения мы можем переписать 𝑛-мерный интеграл из разложения (2.20) как ин-
теграл по 𝑛-мерному кубу:

𝑡ˆ

𝑡0

𝑑𝑡𝑛

𝑡𝑛ˆ

𝑡0

𝑑𝑡𝑛−1 . . .

𝑡2ˆ

𝑡0

𝑑𝑡1 𝑉в(𝑡𝑛)𝑉в(𝑡𝑛−1) . . . 𝑉в(𝑡1) =
1

𝑛!

𝑡ˆ

𝑡0

𝑑𝑡𝑛

𝑡ˆ

𝑡0

𝑑𝑡𝑛−1 . . .

𝑡ˆ

𝑡0

𝑑𝑡1 ̂︀𝑇 𝑉в(𝑡𝑛)𝑉в(𝑡𝑛−1) . . . 𝑉в(𝑡1).

Если договориться, что операцию ̂︀𝑇 можно выносить из под интеграла и за скобки, то формулу (2.20)
можно переписать в следующем виде

𝑈̂в(𝑡, 𝑡0) = ̂︀𝑇
⎛⎝1̂ +

∞∑︁
𝑛=1

1

𝑛!

(︂
− i

ℏ

)︂𝑛 𝑡ˆ

𝑡0

𝑑𝑡𝑛

𝑡ˆ

𝑡0

𝑑𝑡𝑛−1 . . .

𝑡ˆ

𝑡0

𝑑𝑡1 𝑉в(𝑡𝑛)𝑉в(𝑡𝑛−1) . . . 𝑉в(𝑡1)

⎞⎠ . (2.23)

Очень хочется сделать следующее преобразование

𝑡ˆ

𝑡0

𝑑𝑡𝑛

𝑡ˆ

𝑡0

𝑑𝑡𝑛−1 . . .

𝑡ˆ

𝑡0

𝑑𝑡1 𝑉в(𝑡𝑛)𝑉в(𝑡𝑛−1) . . . 𝑉в(𝑡1) =

𝑡ˆ

𝑡0

𝑑𝑡𝑛 𝑉в(𝑡𝑛)

𝑡ˆ

𝑡0

𝑑𝑡𝑛−1 𝑉в(𝑡𝑛−1) . . .

𝑡ˆ

𝑡0

𝑑𝑡1 𝑉в(𝑡1) =

⎛⎝ 𝑡ˆ

𝑡0

𝑑𝑡1 𝑉в(𝑡1)

⎞⎠𝑛

,
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но делать такое преобразование нельзя, поскольку после интегрирования не остаётся временны́х перемен-
ных, которые должена упорядочивать операция ̂︀𝑇 .

Тем не менее мы сделаем такое преобразование, как чисто символическое, тогда мы можем написать
выражение известное как Т-экспонента:

𝑈̂в(𝑡, 𝑡0) = ̂︀𝑇 ∞∑︁
𝑛=0

1

𝑛!

⎛⎝− i

ℏ

𝑡ˆ

𝑡0

𝑑𝑡1 𝑉в(𝑡1)

⎞⎠𝑛

= ̂︀𝑇 exp

⎛⎝− i

ℏ

𝑡ˆ

𝑡0

𝑑𝑡1 𝑉в(𝑡1)

⎞⎠ . (2.24)

(!!!) Т-экспонента — это единое обозначение, подразумевающее, что мы разлагаем экспоненту в ряд,
переписываем 𝑛-ю степень интеграла как интеграл по 𝑛-мерному кубу и вносим под интеграл операцию
Т-упорядочения ̂︀𝑇 .

𝑈̂в(𝑡, 𝑡0) = ̂︀𝑇 exp

⎛⎝− i

ℏ

𝑡ˆ

𝑡0

𝑑𝑡1 𝑉в(𝑡1)

⎞⎠
⏟  ⏞  

символическая запись

= 1̂ +

∞∑︁
𝑛=1

1

𝑛!

(︂
− i

ℏ

)︂𝑛 𝑡ˆ

𝑡0

𝑑𝑡𝑛

𝑡ˆ

𝑡0

𝑑𝑡𝑛−1 . . .

𝑡ˆ

𝑡0

𝑑𝑡1 ̂︀𝑇 𝑉в(𝑡𝑛)𝑉в(𝑡𝑛−1) . . . 𝑉в(𝑡1)

⏟  ⏞  
настоящее определение Т-экспоненты

.

(2.25)
Т-экспонента — это сокращённая запись ряда в формуле (2.25) или в формуле (2.20)

(!!) Если сначала взять интеграл, потом вычислить от интеграла экспоненту, то получившееся выра-
жение будет зависеть только от 𝑡 и 𝑡0 и операции ̂︀𝑇 будет не на что действовать.

(!) Если оператор 𝑉в(𝑡) перестановочен сам с собой в разные моменты времени, то операция Т-
упорядочения оказывается ненужной, тогда мы действительно можем сначала взять интеграл, а потом
от него экспоненту:

[𝑉в(𝑡1), 𝑉в(𝑡2)] = 0 ∀𝑡1, 𝑡2 ∈ [𝑡0, 𝑡] ⇒ 𝑈̂в(𝑡, 𝑡0) = exp

⎛⎝− i

ℏ

𝑡ˆ

𝑡0

𝑑𝑡1 𝑉в(𝑡1)

⎞⎠ .

В частности, есть оператор 𝑉в(𝑡) не зависит от времени, то мы получаем для оператора эволюции при-
вычную матричную экспоненту

𝑉в(𝑡1) = 𝑉в(𝑡2) = 𝑉в ∀𝑡1, 𝑡2 ∈ [𝑡0, 𝑡] ⇒ 𝑈̂в(𝑡, 𝑡0) = exp

(︂
− i

ℏ
(𝑡− 𝑡0) · 𝑉в

)︂
.

(п) Т-экспонента — общий способ решать уравнения вида

𝑑𝑣⃗(𝑡)

𝑑𝑡
= 𝐴(𝑡) 𝑣⃗(𝑡),

где 𝑣⃗ — элемент некоторого линейного пространства (конечномерный или бесконечномерный вектор-
столбец, или функция), а 𝐴(𝑡) — некоторый, зависящий от переменной 𝑡 линейный оператор (конечномер-
ная или бесконечномерная матрица, дифференциальный оператор, интегральный оператор). Различные
применения уравнений такого вида в физике, математике и их приложениях едва ли поддаются подсчёту.

2.4 Т-экспонента и амплитуды вероятностей**
Для понимания этого параграфа следует вспомнить, что если происходит последовательность процес-

сов, то амплитуда вероятности всей цепочки соответствует произведению амплитуд вероятностей каж-
дого звена. А если процесс может происходить несколькими взаимоисключающими способами, причём в
принципе невозможно определить какой способ реализовался, то амплитуда вероятностей процесса соот-
ветствует сумме амплитуд каждого из способов.

(→ КПКМ-3.1) Подробнее про амплитуды вероятностей, их сложение и умножения можно почитать
в книге М.Г. Иванов «Как понимать квантовую механику», § 3.1 «Вероятности и амплитуды вероятностей»
(стр. 49).

Интересно рассмотреть разложение оператора эволюции в представлении взаимодействия (Т-
экспоненту) с точки зрения сложения и умножения амплитуд вероятностей. Мы возьмём исходное вы-
ражения (2.20) для оператора эволюции:

𝑈̂в(𝑡, 𝑡0) = 1̂ +

∞∑︁
𝑛=1

𝑡ˆ

𝑡0

𝑑𝑡𝑛

𝑡𝑛ˆ

𝑡0

𝑑𝑡𝑛−1 . . .

𝑡2ˆ

𝑡0

𝑑𝑡1

⏟  ⏞  
𝑛 раз

𝑉 в(𝑡𝑛)

iℏ
𝑉 в(𝑡𝑛−1)

iℏ
. . .

𝑉 в(𝑡1)

iℏ⏟  ⏞  
𝑛 раз

. (2.26)
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(Здесь 𝑉 в ≡ 𝑉в.)
Запишем матричный элемент оператора эволюции между начальным состоянием |𝑖⟩ и конечным со-

стоянием ⟨𝑓 |:

⟨𝑓 |𝑈̂в(𝑡, 𝑡0)|𝑖⟩ = ⟨𝑓 |𝑖⟩+
∞∑︁
𝑛=1

𝑡ˆ

𝑡0

𝑑𝑡𝑛

𝑡𝑛ˆ

𝑡0

𝑑𝑡𝑛−1 . . .

𝑡2ˆ

𝑡0

𝑑𝑡1

⏟  ⏞  
𝑛 раз

∑︁
𝑎𝑛−1,𝑎𝑛−2,...,𝑎1

𝑉 в
𝑓𝑎𝑛−1

(𝑡𝑛)

iℏ
𝑉 в
𝑎𝑛−1𝑎𝑛−2

(𝑡𝑛−1)

iℏ
. . .

𝑉 в
𝑎1𝑖

(𝑡1)

iℏ⏟  ⏞  
𝑛 раз

.

(2.27)
Здесь состояния |𝑎𝑘⟩ (𝑘 = 1, . . . , 𝑛−1) относятся к некоторому ортонормированному базису в пространстве
состояний. Все суммы по 𝑎𝑘 берутся по всем базисным состояниям.

Запишем также уравнение Шрёдингера в представлении взаимодействия (2.11) в том же 𝑎-базисе:

𝑑

𝑑𝑡
𝜓в(𝑎) =

∑︁
𝑏

𝑉 в
𝑎𝑏(𝑡)

iℏ
𝜓в(𝑏). (2.28)

Мы видим, что 𝑉 в
𝑎𝑏(𝑡)
iℏ 𝑑𝑡 — амплитуда вероятности перехода из состояния 𝑏 в состояние 𝑎 за бесконечнома-

лый период времени [𝑡, 𝑡+ 𝑑𝑡).
Теперь понятно, что произведение амплитуд

𝑉 в
𝑓𝑎𝑛−1

(𝑡𝑛) 𝑑𝑡𝑛

iℏ
𝑉 в
𝑎𝑛−1𝑎𝑛−2

(𝑡𝑛−1) 𝑑𝑡𝑛−1

iℏ
. . .

𝑉 в
𝑎1𝑖

(𝑡1) 𝑑𝑡1

iℏ
соответствует амплитуде последовательности переходов

𝑖→ 𝑎1 → · · · → 𝑎𝑛−2 → 𝑎𝑛−1 → 𝑓.

Каждый переход осуществляется в промежуток времени [𝑡𝑘, 𝑡𝑘 + 𝑑𝑡𝑘), причём времена переходов по це-
почка последовательно нарастают:

𝑖 → 𝑎1 → . . . 𝑎𝑛−2 → 𝑎𝑛−1 → 𝑓
𝑡0 < 𝑡1 < . . . 𝑡𝑛−2 < 𝑡𝑛−1 < 𝑡𝑛 < 𝑡

(2.29)

В схеме (2.29) момент каждого перехода подписан под соответствующей стрелкой.
Поскольку мы рассматриваем замкнутую квантовую систему, последовательность промежуточных со-

стояний 𝑎1 → · · · → 𝑎𝑛−2 → 𝑎𝑛−1 может быть произвольной, поэтому мы должны просуммировать ам-
плитуды вероятностей по всем наборам взаимоисключающих промежуточных состояний, чтобы получить
амплитуду перехода из 𝑖 в 𝑓 через все возможные цепочки переходов длины 𝑛, осуществляющиеся в
заданные промежутки времени [𝑡𝑘, 𝑡𝑘 + 𝑑𝑡𝑘):∑︁

𝑎𝑛−1,𝑎𝑛−2,...,𝑎1

𝑉 в
𝑓𝑎𝑛−1

(𝑡𝑛) 𝑑𝑡𝑛

iℏ
𝑉 в
𝑎𝑛−1𝑎𝑛−2

(𝑡𝑛−1) 𝑑𝑡𝑛−1

iℏ
. . .

𝑉 в
𝑎1𝑖

(𝑡1) 𝑑𝑡1

iℏ
.

Моменты времени, в которые происходят переходы, 𝑡1, . . . 𝑡𝑛 также могут быть произвольными, при усло-
вии выполнения неравенств 𝑡 ⩾ 𝑡𝑛 ⩾ 𝑡𝑛−1 ⩾ · · · ⩾ 𝑡1 ⩾ 𝑡0. Поэтому по всем моментам времени 𝑡1, . . . 𝑡𝑛
следует проинтегрировать (просуммировать вклад всех допустимых интервалов [𝑡𝑘, 𝑡𝑘 + 𝑑𝑡𝑘)), чтобы по-
лучить суммарную амплитуду перехода из 𝑖 в 𝑓 через все возможные цепочки переходов длины 𝑛, осу-
ществлённые в произвольные моменты времени между 𝑡0 и 𝑡:

𝑡ˆ

𝑡0

𝑑𝑡𝑛

𝑡𝑛ˆ

𝑡0

𝑑𝑡𝑛−1 . . .

𝑡2ˆ

𝑡0

𝑑𝑡1
∑︁

𝑎𝑛−1,𝑎𝑛−2,...,𝑎1

𝑉 в
𝑓𝑎𝑛−1

(𝑡𝑛)

iℏ
𝑉 в
𝑎𝑛−1𝑎𝑛−2

(𝑡𝑛−1)

iℏ
. . .

𝑉 в
𝑎1𝑖

(𝑡1)

iℏ
.

Переход из 𝑖 в 𝑓 может осуществляться за произвольное число шагов, так что по числу шагов следует
просуммировать. При этом надо учесть амплитуду перехода из 𝑖 в 𝑓 за нуль шагов: ⟨𝑓 |𝑖⟩ — это амплитуда
вероятности того, что системы в состоянии 𝑖 будет обнаружена в состоянии 𝑓 (без какого-либо воздействия,
кроме измерения).

Просуммировав по числу шагов, за которые происходит переход из 𝑖 в 𝑓 мы получаем формулу (2.27).
Смысл этой формулы с точки зрения амплитуд вероятности теперь ясен: переход из 𝑖 в 𝑓 происходит
через все возможные промежуточные состояния во все возможные моменты времени.
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Глава 3

Нестационарная теория возмущений

3.1 Задача нестационарной теории возмущений
Гамильтониан представляется в виде суммы не зависящего от времени невозмущённого гамильтониана

𝐻̂0 и зависящего от времени возмущения 𝑉 (𝑡):

𝐻̂(𝑡) = 𝐻̂0 + 𝑉 (𝑡).

Надо найти вероятность перехода между двумя различными стационарными состояниями невозмущённо-
го гамильтониана 𝐻̂0 за заданный промежуток времени (𝑡0, 𝑡1).

То есть в момент времени 𝑡0 система была в состоянии |𝑖⟩

𝐻̂0|𝑖⟩ = 𝐸𝑖|𝑖⟩,

а в момент времени 𝑡1 измеряется находится ли система в состоянии |𝑓⟩

𝐻̂0|𝑓⟩ = 𝐸𝑓 |𝑓⟩.

Амплитуда вероятности перехода от состояния |𝑖⟩ в момент времени 𝑡0 в состояние |𝑓⟩ в момент времени
𝑡1 выражается через матричный элемент оператора эволюции. При этом удобно использовать оператор
эволюции в представлении взаимодействия:

⟨𝑓 |𝑈̂(𝑡1, 𝑡0)|𝑖⟩ = ⟨𝑓 |𝑈̂0(𝑡1, 𝑡0) 𝑈̂в(𝑡1, 𝑡0)|𝑖⟩ = ⟨𝑓 |e−i
𝐻̂0(𝑡1−𝑡0)

ℏ 𝑈̂в(𝑡1, 𝑡0)|𝑖⟩ = ei
𝐸̂𝑓 (𝑡1−𝑡0)

ℏ ⟨𝑓 |𝑈̂в(𝑡1, 𝑡0)|𝑖⟩.

Оператор эволюции в представлении взаимодействия может быть разложен в ряд (как Т-экспонента)
(2.25) или (2.20). Это разложение по степеням возмущения является рядом нестационарной теории воз-
мущений для оператора эволюции:

𝑈̂в(𝑡, 𝑡0) = 1̂ +

∞∑︁
𝑛=1

(︂
− i

ℏ

)︂𝑛 𝑡ˆ

𝑡0

𝑑𝑡𝑛

𝑡𝑛ˆ

𝑡0

𝑑𝑡𝑛−1 . . .

𝑡2ˆ

𝑡0

𝑑𝑡1

⏟  ⏞  
𝑛 раз

𝑉в(𝑡𝑛)𝑉в(𝑡𝑛−1) . . . 𝑉в(𝑡1)⏟  ⏞  
𝑛 раз

. (3.1)

Матричный элемент перехода между стационарными состояниями может быть получен из (2.27):

⟨𝑓 |𝑈̂в(𝑡, 𝑡0)|𝑖⟩ = δ𝑓𝑖 +

∞∑︁
𝑛=1

𝑡ˆ

𝑡0

𝑑𝑡𝑛

𝑡𝑛ˆ

𝑡0

𝑑𝑡𝑛−1 . . .

𝑡2ˆ

𝑡0

𝑑𝑡1

⏟  ⏞  
𝑛 раз

∑︁
𝑎𝑛−1...𝑎1

𝑉 в
𝑓𝑎𝑛−1

(𝑡𝑛)

iℏ
𝑉 в
𝑎𝑛−1𝑎𝑛−2

(𝑡𝑛−1)

iℏ
. . .

𝑉 в
𝑎1𝑖

(𝑡1)

iℏ⏟  ⏞  
𝑛 раз

. (3.2)

Матричный элемент возмущения в представлении взаимодействия может быть легко переписан через
матричный элемент в представлении Шрёдингера, благодаря тому, он берётся между стационарными
состояниями:

𝑉 в
𝑏𝑎(𝑡) = ei𝜔𝑏𝑎(𝑡−𝑡0) 𝑉𝑏𝑎(𝑡), 𝜔𝑏𝑎 =

𝐸𝑏 − 𝐸𝑎
ℏ

.

В большинстве задач нам хватит первого порядка теории возмущений (2.18):

𝑈̂ (1)
в (𝑡, 𝑡0) = 1̂− i

ℏ

𝑡ˆ

𝑡0

𝑉в(𝑡1) 𝑑𝑡1. (3.3)
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Матричный элемент перехода между стационарными состояниями:

⟨𝑓 |𝑈̂ (1)
в (𝑡, 𝑡0)|𝑖⟩ = δ𝑓𝑖 −

i

ℏ

𝑡ˆ

𝑡0

𝑉 в
𝑓𝑖(𝑡1) 𝑑𝑡1 = δ𝑓𝑖 −

i

ℏ

𝑡ˆ

𝑡0

ei𝜔𝑓𝑖(𝑡1−𝑡0)𝑉𝑓𝑖(𝑡1) 𝑑𝑡1, 𝜔𝑓𝑖 =
𝐸𝑓 − 𝐸𝑖

ℏ
. (3.4)

Нас интересуют недиагональные матричные элементы, через которые мы выражаем вероятности пе-
рехода в первом порядке нестационарной теории возмущений:

𝑝
(1)
𝑓𝑖 (𝑡, 𝑡0) =

⃒⃒⃒
⟨𝑓 |𝑈̂ (1)

в (𝑡, 𝑡0)|𝑖⟩
⃒⃒⃒2

=

⃒⃒⃒⃒
⃒⃒1ℏ

𝑡ˆ

𝑡0

ei𝜔𝑓𝑖(𝑡1−𝑡0)𝑉𝑓𝑖(𝑡1) 𝑑𝑡1

⃒⃒⃒⃒
⃒⃒
2

, 𝑓 ̸= 𝑖. (3.5)

3.2 Включающееся и выключающееся возмущение

𝐻̂(𝑡) = 𝐻̂0 + 𝑉 (𝑡), 𝑉 (±∞) = 0

То есть в начале и в конце имеется независящий от времени гамильтониан, в промежуточное время
включается возмущение, некоторое время возмущение «шумит», а потом выключается.

В представлении взаимодействия при выключенном возмущении векторы состояния (волновые функ-
ции) не зависят от времени, так что амплитуды перехода между состояниями можно брать между любыми
моментами до включения возмущения и после его выключения. Интегрирование в формуле (3.5) можно
выполнять по всей оси времени:

𝑝
(1)
𝑓𝑖 (𝑡, 𝑡0) =

⃒⃒⃒
⟨𝑓 |𝑈̂ (1)

в (𝑡, 𝑡0)|𝑖⟩
⃒⃒⃒2

=

⃒⃒⃒⃒
⃒⃒1ℏ

+∞ˆ

−∞

ei𝜔𝑓𝑖(𝑡1−𝑡0)𝑉𝑓𝑖(𝑡1) 𝑑𝑡1

⃒⃒⃒⃒
⃒⃒
2

, 𝑓 ̸= 𝑖. (3.6)

Амплитуды вероятностей перехода оказываются связаны с фурье-компонентами соответствующего мат-
ричного элемента возмущения между начальным и конечным состояниями на частоте, отвечающей раз-
ности энергий.

3.3 Включающееся и стабилизирующееся возмущение

𝐻̂(𝑡) = 𝐻̂0 + 𝑉 (𝑡),

𝑉 (−∞) = 0,
𝜕𝑉 (±∞)

𝜕𝑡
= 0.

То есть в начале имеется независящий от времени гамильтониан 𝐻̂0, а в конце имеется другой независящий
от времени гамильтониан 𝐻̂1 = 𝐻̂0+𝑉 (+∞), в промежуточное время имеет место некоторый переходный
процесс, после окончания которого мы измеряем, в каком состоянии оказалась система.

Предполагается, что для конечного гамильтониана 𝐻̂1 = 𝐻̂0 + 𝑉 (+∞) применима стационарная тео-
рия возмущений, в частности уровни гамильтонианов 𝐻̂0 и 𝐻̂1 нумеруются одинаково. Таким образом,
в отличие от параграфа 3.2 мы имеем дело с двумя разными базисами стационарных состояний, номера
стационарных состояний мы будем различать приписывая к ним номер гамильтониана:

𝐻̂0|𝑎0⟩ = 𝐸𝑎0 |𝑎0⟩, 𝐻̂1|𝑎1⟩ = 𝐸𝑎1 |𝑎1⟩.

Начальное состояние относится к исходному базису

|𝑖⟩ = |𝑖0⟩,

тогда как конечное — к базису конечного гамильтониана

|𝑓⟩ = |𝑓1⟩.

С точностью до линейного порядка теории стационарной возмущений (1.35) получаем

|𝑓 г
1⟩ = |𝑓 г

0⟩+
∑︁
𝑎 ̸=𝑓

𝑉𝑎𝑓 (+∞)|𝑎г
0⟩

𝐸𝑓0 − 𝐸𝑎0
.
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Здесь векторы состояния не зависят от времени, т. е. используется представление Гайзенберга.
В представлении взаимодействия при выключенном возмущении векторы состояния (волновые функ-

ции) не зависят от времени, что «выключает» эволюцию до начала переходного процесса, поэтому со-
стояние |𝑖⟩ = |𝑖в0⟩ от времени не зависит. После окончания переходного процесса гамильтониан снова не
зависит от времени, но это уже другой гамильтониан и состояние |𝑓⟩ = |𝑓в’

1 ⟩ от времени уже зависит.
(*) Вместо состояние в представлении взаимодействия |𝑓в

1 ⟩, соответствующего возмущению 𝑉 (𝑡) мы
используем представление взаимодействия со штрихом |𝑓в’

1 ⟩, соответствующее независящему от времени
возмущению 𝑉 (+∞).

|𝑓в’
1 (𝑡)⟩ = 𝑈̂†

0 (𝑡, 𝑡0)𝑈̂(𝑡, 𝑡0)|𝑓 г
1⟩ = ei

𝐻̂0(𝑡−𝑡0)
ℏ e−i

𝐻̂1(𝑡−𝑡0)
ℏ |𝑓 г

1⟩ = ei
𝐻̂0(𝑡−𝑡0)

ℏ e−i
𝐸𝑓1

(𝑡−𝑡0)

ℏ |𝑓 г
1⟩ =

= e−i
𝐸𝑓1

(𝑡−𝑡0)

ℏ ei
𝐻̂0(𝑡−𝑡0)

ℏ

⎛⎝|𝑓 г
0⟩+

∑︁
𝑎̸=𝑓

𝑉𝑚𝑓 (+∞)|𝑎г
0⟩

𝐸𝑓0 − 𝐸𝑎0

⎞⎠ =

= e−i
𝐸𝑓1

(𝑡−𝑡0)

ℏ

⎛⎝ei
𝐸𝑓0

(𝑡−𝑡0)

ℏ |𝑓 г
0⟩+

∑︁
𝑎̸=𝑓

𝑉𝑎𝑓 (+∞) ei
𝐸𝑎0

(𝑡−𝑡0)

ℏ |𝑎г
0⟩

𝐸𝑓0 − 𝐸𝑎0

⎞⎠ =

= e−i
(𝐸𝑓1

−𝐸𝑓0
)(𝑡−𝑡0)

ℏ

⎛⎝|𝑓 г
0⟩+

∑︁
𝑎̸=𝑓

𝑉𝑎𝑓 (+∞) e−i𝜔𝑓𝑎(𝑡−𝑡0)|𝑎г
0⟩

𝐸𝑓0 − 𝐸𝑎0

⎞⎠ .

Далее мы откинем фазовый множитель e−i
(𝐸𝑓1

−𝐸𝑓0
)(𝑡−𝑡0)

ℏ = e−i
𝑉𝑓𝑓 (𝑡−𝑡0)

ℏ , поскольку на вероятность перехода
он не влияет.

Выпишем амплитуду перехода удерживая члены линейного порядка по возмущению

⟨𝑓1|𝑈̂ (1)
в (𝑡, 𝑡0)|𝑖0⟩ =

⎛⎝⟨𝑓 г
0 |+

∑︁
𝑎̸=𝑓

𝑉𝑓𝑎(+∞) ei𝜔𝑓𝑎(𝑡−𝑡0)⟨𝑎г
0|

𝐸𝑓0 − 𝐸𝑎0

⎞⎠
⏟  ⏞  

⟨𝑓1|

⎛⎝1̂− i

ℏ

𝑡ˆ

𝑡0

𝑉в(𝑡1) 𝑑𝑡1

⎞⎠
⏟  ⏞  

𝑈̂
(1)
в (𝑡,𝑡0)

|𝑖0⟩ =

= ⟨𝑓 г
0 |𝑖0⟩⏟  ⏞  
0

+
∑︁
𝑎 ̸=𝑓

𝑉𝑎𝑓 (+∞) ei𝜔𝑓𝑎(𝑡−𝑡0)

𝐸𝑓0 − 𝐸𝑎0
⟨𝑎г

0|𝑖0⟩⏟  ⏞  
δ𝑎𝑖

− i

ℏ

𝑡ˆ

𝑡0

⟨𝑓 г
0 |𝑉в(𝑡1)|𝑖0⟩⏟  ⏞  

ei𝜔𝑓𝑖(𝑡1−𝑡0) 𝑉𝑓𝑖(𝑡1)

𝑑𝑡1 =

=
𝑉𝑓𝑎(+∞) ei𝜔𝑓𝑎(𝑡−𝑡0)

𝐸𝑓0 − 𝐸𝑖0
− i

ℏ

𝑡ˆ

𝑡0

ei𝜔𝑓𝑖(𝑡1−𝑡0) 𝑉𝑓𝑖(𝑡1) 𝑑𝑡

⏟  ⏞  
по частям

=

=
𝑉𝑓𝑎(+∞) ei𝜔𝑓𝑎(𝑡−𝑡0)

ℏ𝜔𝑓𝑖
−ei𝜔𝑓𝑖(𝑡1−𝑡0) 𝑉𝑓𝑖(𝑡1)

ℏ𝜔𝑓𝑖

⃒⃒⃒⃒𝑡
𝑡0⏟  ⏞  

0

+
1

ℏ𝜔𝑓𝑖

𝑡ˆ

𝑡0

ei𝜔𝑓𝑖(𝑡1−𝑡0) 𝜕𝑉𝑓𝑖(𝑡1)

𝜕𝑡1
𝑑𝑡1.

На последнем шаге мы считали, что 𝑉 (𝑡0) = 𝑉 (−∞) = 0, 𝑉 (𝑡) = 𝑉 (+∞), при этом граничный член при
интегрировании по частям в точности скомпенсировался с членом ⟨𝑓1|𝑖0⟩, появляющимся из-за неортого-
нальности начального и конечного состояний.

Амплитуда вероятности перехода принимает вид

⟨𝑓1|𝑈̂ (1)
в (𝑡, 𝑡0)|𝑖0⟩ =

1

ℏ𝜔𝑓𝑖

+∞ˆ

−∞

ei𝜔𝑓𝑖(𝑡1−𝑡0) 𝜕𝑉𝑓𝑖(𝑡1)

𝜕𝑡1
𝑑𝑡1. (3.7)

Она получается из амплитуды перехода для возмущения действующего ограниченное время (3.4) инте-
грированием по частям и отбрасыванием граничного члена.

Вероятность перехода в первом порядке теории возмущений:

𝑝
(1)
𝑓𝑖 =

⃒⃒⃒⃒
⃒⃒ 1

ℏ𝜔𝑓𝑖

+∞ˆ

−∞

ei𝜔𝑓𝑖(𝑡1−𝑡0) 𝜕𝑉𝑓𝑖(𝑡1)

𝜕𝑡1
𝑑𝑡1

⃒⃒⃒⃒
⃒⃒
2

, 𝑓 ̸= 𝑖. (3.8)

(!) Полученная формула (3.8) работает и в описанном выше случае 𝑉 (±∞), т. е. она обобщает формулу
(3.6).

31



3.3.1 Мгновенное изменение гамильтониана

Пусть возмущение пропорционально тета-функции от времени

𝐻̂(𝑡) = 𝐻̂0 + 𝑉 · θ(𝑡).

В этом случае гамильтониан в момент времени 𝑡 = 0 мгновенно переключается с одного независящего от
времени оператора 𝐻̂0 на другой независящий от времени оператор 𝐻̂1 = 𝐻̂0 + 𝑉 .

Если мы знаем собственные функции операторов 𝐻̂0 и 𝐻̂1, то вероятности перехода между стацио-
нарными состояниями находятся без использования теории возмущений через определению амплитуды
вероятности как коэффициента разложения вектора состояния:

𝑝𝑓𝑖 = |⟨𝑓 |𝑖⟩|2 , 𝐻̂0|𝑖⟩ = 𝐸𝑖|𝑖⟩, 𝐻̂1|𝑓⟩ = 𝐸𝑓 |𝑓⟩, ⟨𝑖|𝑖⟩ = ⟨𝑓 |𝑓⟩ = 1.

Это точная формула для перехода при мгновенном изменении гамильтониана.
Что же даёт нам в этом случае нестационарная теория возмущений?

⟨𝑓1|𝑈̂ (1)
в (𝑡, 𝑡0)|𝑖0⟩ =

1

ℏ𝜔𝑓𝑖

+∞ˆ

−∞

ei𝜔𝑓𝑖(𝑡1−𝑡0) 𝜕𝑉𝑓𝑖 𝜃(𝑡1)

𝜕𝑡1
𝑑𝑡1 =

1

ℏ𝜔𝑓𝑖

+∞ˆ

−∞

ei𝜔𝑓𝑖(𝑡1−𝑡0)𝑉𝑓𝑖 δ(𝑡1) 𝑑𝑡1 =

= e−i𝜔𝑓𝑖𝑡0
𝑉𝑓𝑖
ℏ𝜔𝑓𝑖

= e−i𝜔𝑓𝑖𝑡0
𝑉𝑓𝑖

𝐸𝑓 − 𝐸𝑖
= e−i𝜔𝑓𝑖𝑡0

⎛⎝⟨𝑓0|+
∑︁
𝑎̸=𝑓

𝑉𝑓𝑎⟨𝑎0|
𝐸𝑓0 − 𝐸𝑎0

⎞⎠
⏟  ⏞  

⟨𝑓1|

|𝑖0⟩.

Получаем (с точностью до фазового множителя, связанного с произвольностью выбора начального мо-
мента времени) ту же самую амплитуду вероятности ⟨𝑓 |𝑖⟩, только для конечного состояния взятого в
линейном порядке теории возмущений.

В задаче о переходе при мгновенном изменении гамильтониана стационарная и нестационарная теория
возмущений позволяют получить один и тот же приближённый ответ.

3.3.2 Адиабатическое изменение гамильтониана

Мы рассмотрели случай мгновенного изменения гамильтониана. Противоположный предельный слу-
чай — асимптотически медленное изменение гамильтониана.

Пусть матричный элемент, отвечающий за переход 𝑘 раз непрерывно дифференцируемая функция
времени 𝑉𝑓𝑖(𝑡) ∈ 𝐶𝑘(R). Соответственно 𝜕𝑉𝑓𝑖(𝑡)

𝜕𝑡 ∈ 𝐶𝑘−1(R). Тогда на больших частотах фурье-образ

𝐹
[︁
𝜕𝑉𝑓𝑖(𝑡)
𝜕𝑡

]︁
(𝜔) убывает на больших частотах как

𝐹

[︂
𝜕𝑉𝑓𝑖(𝑡)

𝜕𝑡

]︂
(𝜔) = 𝑂

(︂
1

|𝜔|𝑘−1

)︂
,

а амплитуда вероятности перехода (3.7) убывает как

⟨𝑓1|𝑈̂ (1)
в (𝑡, 𝑡0)|𝑖0⟩ = 𝑂

(︂
1

|𝜔𝑓𝑖|𝑘

)︂
.

Пусть 𝑉𝑓𝑖(𝑡) = 𝑣(𝑡/𝜏), где 𝜏 — характерное время переходного процесса (характерное время изменения
функции 𝑉𝑓𝑖(𝑡)), тогда

𝐹

[︂
𝜕𝑉𝑓𝑖(𝑡)

𝜕𝑡

]︂
(𝜔) = 𝐹

[︂
𝑣′(𝑡/𝜏)

𝜏

]︂
(𝜔) = 𝐹 [𝑣′(𝜉)] (𝜔𝜏) = 𝑂

(︂
1

|𝜔𝜏 |𝑘−1

)︂
.

Здесь 𝑣′ — производная по аргументу функции.
Для амплитуды вероятности перехода получаем

⟨𝑓1|𝑈̂ (1)
в (𝑡, 𝑡0)|𝑖0⟩ = 𝑂

(︂
𝜏

|𝜔𝑓𝑖𝜏 |𝑘

)︂
.

Для вероятности перехода

𝑝𝑓𝑖 = 𝑂

(︂
𝜏2

|𝜔𝑓𝑖𝜏 |2𝑘

)︂
.
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Теперь можно оценить вероятность перехода при медленном изменении гамильтониана из соображений
размерности:

𝑝𝑓𝑖 ≈
𝐶

|𝜔𝑓𝑖𝜏 |2(𝑘−1)

(︂
max𝑡 |𝑉𝑓𝑖(𝑡)|

ℏ|𝜔𝑓𝑖|

)︂2

, |𝜔𝑓𝑖𝜏 | ≪ 1,

где 𝐶 — безразмерная константа, зависящая от формы функции 𝑣(𝑡/𝜏).
Мы видим, что по мере увеличения времени переходного процесса 𝜏 вероятность перехода между

уровнями падает тем быстрее, чем более гладкая функция описывает переходный процесс.
В адиабатическом пределе 𝜏 → ∞ медленное изменение гамильтониана не вызывает переходов между

уровнями.
(ф) Вспомним, что в квазиклассическом приближении правило квантования Бора–Зоммерфельда вы-

ражается через величину, которая в классической механике была адиабатическим инвариантом, т. е. для
этой величины при медленном изменении гамильтониана выполнялся приближённый закон сохранения,
тем более точный, чем медленнее изменения:

1

2𝜋

˛
𝑝(𝑥) 𝑑𝑥⏟  ⏞  

адиабатический инвариант

= ℏ (𝑛+ 1
2 ), 𝑝(𝑥) = ±

√︀
2𝑚(𝐸 − 𝑉 (𝑥)).

Соответственно в квантовой механике адиабатическим инвариантом оказался номер уровня энергии 𝑛.
(ф) Для системы невзаимодействующих частиц адиабатически медленное изменение гамильтониана

не меняет их распределения по уровням энергии, а значит, остаётся неизменной энтропия системы. Как
и должно быть для адиабатических процессов в термодинамике.

3.4 Периодическое возмущение и «золотое правило Ферми»

Пусть оператор возмущения гармонически колеблется со временем (произвольное периодическое из-
менение мы можем разложить по гармоническим колебаниям в ряд Фурье):

𝑉 (𝑡) = 𝐹 e−i𝜔𝑡 + 𝐹 † ei𝜔𝑡 = 𝑉 †(𝑡).

Амплитуда перехода под действием такого возмущения (положим начальный момент времени 𝑡0 = 0)

⟨𝑓 |𝑈̂ (1)
в (𝑡, 0)|𝑖⟩ = − i

ℏ

𝑡ˆ

0

ei𝜔𝑓𝑖𝑡1𝑉𝑓𝑖(𝑡1) 𝑑𝑡1 = − i

ℏ

𝑡ˆ

0

(︁
ei(𝜔𝑓𝑖−𝜔)𝑡1𝐹𝑓𝑖 + ei(𝜔𝑓𝑖+𝜔)𝑡1𝐹 *

𝑖𝑓

)︁
𝑑𝑡1 =

= −1

ℏ

(︂
𝐹𝑓𝑖

ei(𝜔𝑓𝑖−𝜔)𝑡 − 1

𝜔𝑓𝑖 − 𝜔
+ 𝐹 *

𝑖𝑓

ei(𝜔𝑓𝑖+𝜔)𝑡 − 1

𝜔𝑓𝑖 + 𝜔

)︂
=

= − i

ℏ

(︂
𝐹𝑓𝑖 e

i𝑡(𝜔𝑓𝑖−𝜔)/2 sin[𝑡(𝜔𝑓𝑖 − 𝜔)/2]

(𝜔𝑓𝑖 − 𝜔)/2
+ 𝐹 *

𝑖𝑓 e
i𝑡(𝜔𝑓𝑖+𝜔)/2

sin[𝑡(𝜔𝑓𝑖 + 𝜔)/2]

(𝜔𝑓𝑖 + 𝜔)/2

)︂
.

Соответствующая вероятность перехода

𝑝𝑓𝑖 =
|𝐹𝑓𝑖|2

ℏ2

(︂
sin[𝑡(𝜔𝑓𝑖 − 𝜔)/2]

(𝜔𝑓𝑖 − 𝜔)/2

)︂2

⏟  ⏞  
резонанс при 𝜔≈𝜔𝑓𝑖

+
|𝐹𝑖𝑓 |2

ℏ2

(︂
sin[𝑡(𝜔𝑓𝑖 + 𝜔)/2]

(𝜔𝑓𝑖 + 𝜔)/2

)︂2

⏟  ⏞  
резонанс при 𝜔≈−𝜔𝑓𝑖

+

+
|𝐹𝑓𝑖𝐹𝑖𝑓 |

ℏ2
2 cos [𝜔𝑡− arg(𝐹𝑓𝑖𝐹𝑖𝑓 )]

sin [𝑡(𝜔𝑓𝑖 − 𝜔)/2]

(𝜔𝑓𝑖 − 𝜔)/2

sin [𝑡(𝜔𝑓𝑖 + 𝜔)/2]

(𝜔𝑓𝑖 + 𝜔)/2⏟  ⏞  
интерференционный член

.

Рассмотрим ситуацию, когда один из знаменателей много меньше другого, т. е. когда 𝜔 ≈ ±𝜔𝑓𝑖, тогда
интерференционным членом и одним из двух оставшихся слагаемых можно пренебречь.

При 𝜔 = ±𝜔𝑓𝑖 вероятность, создаваемая соответствующим резонансным членом растёт как 𝑡2. Но
если усреднить вероятность по частоте 𝜔, то, поскольку ширина резонансной области спадает как ∼ 𝜋

𝑡
(см. рис. 3.1), то усреднённая вероятность растёт линейно по времени, а значит можно ввести конечную
вероятность перехода в единицу времени.

(!) Когда вероятность перехода следует усреднять по времени?
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Ω

sin2(Ω𝑡)
Ω2

𝜋
𝑡−𝜋

𝑡
2𝜋
𝑡− 2𝜋

𝑡

𝑡2

Рис. 3.1: График функции sin2(Ω𝑡)

Ω2 . Здесь Ω =
𝜔𝑓𝑖±𝜔

2
. Штриховая линия — график 1

Ω2

• Когда от события к событию частота 𝜔 или частота 𝜔𝑓𝑖 воспроизводятся с точностью много хуже, чем
𝜋
𝑡 , причём некогерентным образом (чтобы усреднялись вероятности, а не амплитуды)1. Например,
если мы рассматриваем переходы в атомах под действием поля лазерного излучения, усреднение по
частоте может происходить за счёт теплового движения атомов (нестабильность 𝜔𝑓𝑖 из-за эффекта
Доплера), или за счёт нестабильности частоты лазера (нестабильность 𝜔).

• Когда начальное или конечное состояние перехода принадлежит к непрерывному спектру (плот-
ность состояний в котором слабо меняется на интервале порядка 2𝜋

𝑡 ), а потому не фиксированы
однозначно.

• Вместо непрерывного спектра подойдёт и достаточно частый дискретный спектр, если на интервале
порядка 𝜋

𝑡 уровни распределены достаточно равномерно.

Вероятность в единицу времени

𝑤𝑓𝑖 =
|𝐹𝑓𝑖|2

ℏ2
𝑡

(︂
sin[𝑡(𝜔𝑓𝑖 − 𝜔)/2]

𝑡(𝜔𝑓𝑖 − 𝜔)/2

)︂2

⏟  ⏞  
𝑓
(︀𝜔𝑓𝑖−𝜔

2

)︀
+
|𝐹𝑖𝑓 |2

ℏ2
𝑡

(︂
sin[𝑡(𝜔𝑓𝑖 + 𝜔)/2]

𝑡(𝜔𝑓𝑖 + 𝜔)/2

)︂2

⏟  ⏞  
𝑓
(︀𝜔𝑓𝑖+𝜔

2

)︀
Функция 𝑓(Ω) = sin2(Ω𝑡)

Ω2𝑡 — это пик высотой 𝑡 и характерной шириной 2𝜋
𝑡 , с фикисированной (не

зависящей от 𝑡) площадью (см. рис. 3.1). При больших временах его можно приблизить дельта-функцией.

ˆ
sin2(Ω𝑡)

Ω2𝑡
𝑑Ω =

ˆ
sin2(Ω𝑡)

(Ω𝑡)2
𝑑(Ω𝑡) = 𝜋,

sin2(Ω𝑡)

Ω2𝑡
≈ 𝜋 δ(Ω).

В этом приближении вероятность в единицу времени на единичный интервал энергии

𝑤𝑓𝑖 =
2𝜋

ℏ
|𝐹𝑓𝑖|2 δ(𝐸𝑓 − 𝐸𝑖 − ℏ𝜔) +

2𝜋

ℏ
|𝐹𝑖𝑓 |2 δ(𝐸𝑓 − 𝐸𝑖 + ℏ𝜔).

Мы преобразовали аргументы дельта-функций так, чтобы в дальнейшем было удобнее интегрировать по
энергии.

Для определённости запишем вероятность перехода в единицу времени из дискретного спектра в непре-
рывный.

𝑊𝑓𝑖 =

ˆ
𝑤𝑓𝑖 𝜌(𝐸𝑓 ) 𝑑𝐸𝑓 =

2𝜋

ℏ
|𝐹𝑓𝑖|2 𝜌(𝐸𝑖 + ℏ𝜔⏟  ⏞  

𝐸𝑓±ℏ𝜋
𝑡

) +
2𝜋

ℏ
|𝐹𝑖𝑓 |2 𝜌(𝐸𝑖 − ℏ𝜔⏟  ⏞  

𝐸𝑓±ℏ𝜋
𝑡

). (3.9)

Здесь 𝜌(𝐸𝑓 ) — плотность конечных состояний по энергии состояний.
Мы видим, что под действием гармонического возмущения с частотой 𝜔 происходят переходы связан-

ный с изменением энергии системы на ±ℏ𝜔 с точностью порядка ±ℏ𝜋𝑡 (величина связана с шириной пика,
который мы приблизили дельта-функцией, см. рис. 3.1).

1Если в одном событии ширина спектральной линии возмущения шире 2𝜋
𝑡

, то это не тот случай, т.к. тут надо склады-
вать/усреднять не вероятности, а амплитуды вероятности).
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(ф!) То, что система получает или отдаёт при переходе ровно один квант энергии ℏ𝜔 связано с тем,
что мы рассмотрели первый порядок нестационарной теории возмущений. Как мы выяснили в § (2.4) «Т-
экспонента и амплитуды вероятностей**», первый порядок разложения соответствует тому, что возмуще-
ние подействовало на систему ровно один раз и вызвало один переход. Если нас интересует процесс, в
котором система поглощает или отдаёт энергию 𝑛ℏ𝜔, то этот процесс проявится в 𝑛-ом порядке нестаци-
онарной теории возмущений.

Для возмущения, не зависящего от времени

𝑉 (𝑡) = 𝑉 .

из двух членов остаётся один и на место матричного элемента 𝐹𝑓𝑖 становится 𝑉𝑓𝑖

𝑊𝑓𝑖 =
2𝜋

ℏ
|𝑉𝑓𝑖|2 𝜌( 𝐸𝑖⏟ ⏞ 

𝐸𝑓±ℏ𝜋
𝑡

). (3.10)

Для постоянного возмущения возможны переходы на уровни с той же энергией (исходный дискретный
уровень должен попасть внутрь непрерывного спектра) с точностью порядка ±ℏ𝜋𝑡 .

Формула (3.10) совпадает с полученной ранее с помощью стационарной теории возмущений формулой
для времени жизни квазистационарного уровня (1.75) (с переобозначением 𝛾 =𝑊𝑓𝑖).

Формулы (3.9), (3.10) называют золотым правилом Ферми.

3.5 Соотношение неопределённостей энергия-время
Рассмотрим процесс измерения энергии квантовой системы. Взаимодействие системы с прибором

должно быть мало, поэтому его обычно можно рассмотреть по теории возмущений. Прибор почти клас-
сический, так что возмущение можно рассматривать как внешнее классическое (!) поле, постоянное или
(почти) периодическое. Измерение при этом проводится на протяжении конечного времени 𝛿𝑡

Мы уже видели, что в таких условиях золотое правило Ферми (3.9), (3.10) задаёт сохранение энергии
с конечной точностью

𝛿𝐸 · 𝛿𝑡 ∼ ℏ.

Реальное измерение не может быть точнее, так что мы получаем соотношение неопределённостей энергия-
время:

𝛿𝐸 · 𝛿𝑡 ∼
> ℏ. (3.11)

В нерелятивистской квантовой механике время (в отличие от пространственных координат) не оператор,
а параметр. Поэтому интерпретация соотношения (3.11) по аналогии с соотношениями неопределённостей
для некоммутирующих операторов оказывается невозможным.
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Глава 4

Сложение моментов → КПКМ-15.5

См. книгу М.Г. Иванов «Как понимать квантовую механику», § 15.5 «Сложение моментов» (стр. 477).
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Глава 5

Специальная теория относительности в
контексте квантовой механики

5.1 Обозначения, соглашения, напоминания (л)

Мы приступаем к изучению релятивистских уравнений квантовой механики: уравнения Клейна–Фока–
Гордона и уравнения Дирака. Перед этим полезно вспомнить некоторые свойства специальной теории от-
носительности (СТО) в контексте квантовой механики. Мы будем следовать соглашениям и обозначениям
в книге МТП.

Скорость света 𝑐 при вычислениях в СТО удобно считать равной 1. Потом, если возникнет необходи-
мость, скорость света в правильной степени легко вставить в формулы из соображений размерности.

4-мерные объекты будут иметь ту же размерность, что одноимённые или аналогичные 3-мерные объ-
екты, если 4-мерный объект объединяет разные 3-мерные, то выбирается размерность того 3-мерного
аналога, у которого больше независимых компонент. 3-мерные объекты входят в 4-мерные объекты так,
чтобы их можно было получить (хотя бы в пределе 𝑣 ≪ 𝑐) выкидыванием из 4-мерного объекта всех
дополнительных компонент.

• Все 4 координаты несут верхние индексы и имеют размерность длины (как пространственные ко-
ординаты), поэтому временна́я координата — 𝑥0 = 𝑐𝑡. 4 пространственно-временных координаты
образуют 4-мерный радиус-вектор

𝑥𝑖 = (𝑥0, 𝑥1, 𝑥2, 𝑥3⏟  ⏞  
𝑥𝛼

) = (𝑐𝑡, 𝑥, 𝑦, 𝑧⏟  ⏞  
r

) = (𝑐𝑡, 𝑥𝛼) = (𝑐𝑡, r) = 𝑥, 𝑖, 𝑗 = 0, 1, 2, 3, 𝛼, 𝛽 = 1, 2, 3.

3-мерные индексы 𝛼, 𝛽, 𝜇, 𝜈 — греческие, 4-мерные 𝑖, 𝑗, 𝑘, 𝑙 — латинские.

• Метрика Минковского определяется так, что её пространственная часть совпадает с евклидовой
метрикой

η𝑖𝑗 = diag(−1,+1,+1,+1) = η𝑖𝑗 , η𝛼𝛽 = δ𝛼𝛽 .

Так что если мы поднимаем или опускаем пространственный (греческий) индекс то компонента
тензора не меняется вне зависимости от того рассматриваем ли мы метрику Евклида или метрику
Минковского.

(!!) Это отличается от выбора знаков в курсе теоретической физики Ландау и Лифшица.

• Интервал 𝑑𝑠 — аналог расстояния — имеет размерность длины.

• Собственное время 𝑑𝜏 имеет размерность времени.

𝑑𝑠2 = 𝜂𝑖𝑗 𝑑𝑥
𝑖 𝑑𝑥𝑗 = −𝑐2 𝑑𝑡2 + 𝑑𝑥2 + 𝑑𝑦3 + 𝑑𝑧2 = −𝑐2 𝑑𝜏2.

• Оператор частной производной 𝜕𝑖 = 𝜕
𝜕𝑥𝑖 по умолчанию несёт нижний индекс, чтобы дифференциал

давал правильную свёртку верхнего индекса с нижним 𝑑𝜑 = 𝑑𝑥𝑖 𝜕𝑖𝜑.

𝜕𝑖 =
𝜕

𝜕𝑥𝑖
=
(︁ 𝜕

𝜕𝑥0
,
𝜕

𝜕𝑥1
,
𝜕

𝜕𝑥2
,
𝜕

𝜕𝑥3⏟  ⏞  
𝜕

𝜕𝑥𝛼

)︁
=
(︁1
𝑐

𝜕

𝜕𝑡
,
𝜕

𝜕𝑥
,
𝜕

𝜕𝑦
,
𝜕

𝜕𝑧

)︁
= (𝜕0, 𝜕1, 𝜕2, 𝜕3⏟  ⏞  

𝜕𝛼

).
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• Оператор набла ∇𝑖 также несёт нижний индекс. Дальше набла будет обозначать удлинённую (кова-
риантную) производную и будет отличаться от 𝜕𝑖.

∇𝑖 = (∇0,∇1,∇2,∇3⏟  ⏞  
∇

) = (∇0,∇).

• 4-мерный импульс имеет размерность импульса, по умолчанию несёт нижний индекс, его временна́я
компонента соответствует энергии со знаком минус1:

𝑝𝑖 =
(︀
−ℰ
𝑐 , 𝑝𝑥, 𝑝𝑦, 𝑝𝑧

)︀
• Скалярный квадрат 4-импульса связан с массой, что позволяет выразить энергию свободной частицы

через импульс, т. е. получить функцию Гамильтона:

𝑝𝑖𝑝
𝑖 = η𝑖𝑗𝑝𝑖𝑝𝑗 = −𝑝20 + 𝑝2𝑥 + 𝑝2𝑦 + 𝑝2𝑧 = −(ℰ𝑐 )

2 + p2 = −𝑚2𝑐2 ⇒ 𝐻(p) = ℰ =
√︀
𝑚2𝑐4 + 𝑐2p2.

5.2 От догадки де Бройля к уравнению Шрёдингера
С самого начала при открытии Луи де Бройлем корпускулярно-волнового дуализма использовались

соображения, привлечённые из СТО. Соотношения между частотой и волновым вектором с одной стороны
и энергией и импульсом с другой

ℰ = ℏ𝜔, p = ℏk

были осознаны как пропорциональность между двумя 4-мерными векторами. В ковариантных компонен-
тах имеем

𝑝𝑖 = (−ℰ
𝑐 , 𝑝𝑥, 𝑝𝑦, 𝑝𝑧⏟  ⏞  

p

) = ℏ𝑘𝑖 = ℏ(−𝜔
𝑐 , 𝑘𝑥, 𝑘𝑦, 𝑘𝑧⏟  ⏞  

k

).

При сопоставлении наблюдаемых операторов догадка де Бройля позволяет определить собственные числа
и общие собственные функции для всех компонент 𝑝𝑖 и определить действие соответствующих операторов.
Из догадки де Бройля имеем действие 𝑝𝑖 на фурье-гармонику (плоскую монохроматическую волну):

𝑝𝑖e
i𝑥𝑗𝑘𝑗 = ℏ𝑘𝑖ei𝑥

𝑗𝑘𝑗 = −iℏ𝜕𝑖ei𝑥
𝑗𝑘𝑗 .

Поскольку такие волны образуют базис, то мы получаем оператор 4-импульса как дифференциальный
оператор:

𝑝𝑖 = (− ℰ̂
𝑐 , 𝑝𝑥, 𝑝𝑦, 𝑝𝑧⏟  ⏞  

p̂

) = −iℏ𝜕𝑖 =
(︁
− iℏ

1

𝑐

𝜕

𝜕𝑡
,−iℏ

𝜕

𝜕𝑥
,−iℏ

𝜕

𝜕𝑦
,−iℏ

𝜕

𝜕𝑧⏟  ⏞  
−iℏ𝜕

)︁
.

Таким образом в дополнение к уже привычному выражению 3-мерного импульса через 3-мерный оператор
набла получается выражение энергии через производную по времени:

p̂ = −iℏ𝜕, ℰ̂ = iℏ
𝜕

𝜕𝑡
.

В классической гамильтоновой механике энергия выражается через импульсы и координаты с помощью
функции Гамильтона:

ℰ = 𝐻(𝑥𝛼, 𝑝𝛼)

При переходе к квантовой механике заменяем энергию и импульсы операторами («надеваем шляпки»)
и получаем соотношение между операторами, которое вообще говоря не выполняется (производная по
времени не выражается через дифференцирование по пространственным координатам):

ℰ̂ = 𝐻(𝑥𝛼, 𝑝𝛼).

1Если вы любите уравнение Гамильтона–Якоби, то знаете, что 𝜕𝑆
𝜕𝑥𝛼

= 𝑝𝛼 — индекс получается нижний, как у градиента,
𝜕𝑆
𝜕𝑡

= −ℰ = 𝑝𝑡 ⇒ 𝜕𝑆
𝜕𝑐𝑡

= −ℰ
𝑐
.

Также обобщённые скорости наследуют верхний индекс у обобщённых координат: 𝑣𝑖 = 𝑥̇𝑖. Обобщённые импульсы по-
лучаются дифференцированием лагранжиана по обобщённым скоростям 𝑝𝑖 = 𝜕𝐿

𝜕𝑥̇𝑖
и, как и при дифференцировании по

координатам, получают нижний индекс.
Из СТО вы помните, что 𝑝𝑖 = (ℰ

𝑐
, 𝑝𝑥, 𝑝𝑦 , 𝑝𝑧). Опуская индекс с помощью метрики Минковского (с нашими знаками!)

получаем 𝑝𝑖 = (−ℰ
𝑐
, 𝑝𝑥, 𝑝𝑦 , 𝑝𝑧). Но соответствие 𝑝𝑡 = −ℰ на самом деле работает и за пределами СТО.

Подробнее и аккуратнее см. книгу МТП. Про нижние индексы у импульса см. главу 1.3 «Лагранжев формализм». Про
временно́й импульс как минус энергию см. главы 1.9 «Время как координата и энергия как импульс» и 2.9 «Время как
координата и энергия как импульс в гамильтоновом формализме».
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Но мы можем выделить подпространство волновых функций, на которых это операторное равенство
выполняется. Для таких функций должно выполняться условие

ℰ̂⏟ ⏞ 
iℏ 𝜕

𝜕𝑡

𝜓 = 𝐻(𝑥𝛼, 𝑝𝛼)⏟  ⏞  
𝐻̂

𝜓

которое совпадает с врменны́м уравнением Шрёдингера

iℏ
𝜕

𝜕𝑡
𝜓 = 𝐻̂𝜓.

(**) В современных книгах по квантовой механике обычно стараются не рассматривать время на
равных с пространственными координатами (а энергию на равных с пространственными импульсами). Это
связано с тем, что нормированная волновая функция квадратично интегрируема по пространственным
координатам, но не по времени: ˆ

R3

|𝜓(𝑡, 𝑥, 𝑦, 𝑧)|2 𝑑𝑥 𝑑𝑦 𝑑𝑧 = 1,

ˆ

R4

|𝜓(𝑡, 𝑥, 𝑦, 𝑧)|2 𝑑𝑥 𝑑𝑦 𝑑𝑧 𝑑𝑡 =
+∞ˆ

−∞

1 𝑑𝑡 = ∞.

Поэтому обычно в квантовой механики 𝜓(𝑡, 𝑥, 𝑦, 𝑧) рассматривается как |𝜓(𝑡)⟩, т. е. как вектор состояния в
пространстве квадратично-интегрируемых функций 𝐿2(R3) в зависимости от параметра 𝑡. Рассмотрение
всех аргументов волновой функции 𝜓(𝑡, 𝑥, 𝑦, 𝑧) на равных предполагает, что 𝑡, 𝑥, 𝑦, 𝑧 все вместе нумеруют
компоненты вектора состояния, т. е. имеется один вектор состояния для всех моментов времени (в про-
странство 𝐿2(R4) этот вектор не попадает, т.к. функция 𝜓(𝑡, 𝑥, 𝑦, 𝑧) в R4 квадратично не интегрируема).

5.3 Ковариантные производные

В гамильтоновой механике взаимодействие частицы с зарядом 𝑞 с внешним электромагнитным полем
можно ввести сделав замену

𝑝𝑖 = (−ℰ
𝑐 , 𝑝𝑥, 𝑝𝑦, 𝑝𝑧⏟  ⏞  

p

) → 𝒫𝑖 = (𝒫0,𝒫) := 𝑃𝑖 −
𝑞

𝑐
𝐴𝑖. (5.1)

(О) Импульсы 𝒫𝑖 называются удлинёнными импульсами.
Здесь 𝑃𝑖 — обобщённый импульс2. 𝑝𝑖 тоже обобщённый импульс, но в отсутствие электромагнитного

поля.
𝑃𝑖 = (−ℰ

𝑐 , 𝑃𝑥, 𝑃𝑦, 𝑃𝑧⏟  ⏞  
P

).

Поле 𝐴𝑖 — 4-мерный ковекторный потенциал (подобно импульсам потенциал удобнее рассматривать с
нижним индексом):

𝐴𝑖 = (−𝜙,𝐴𝑥, 𝐴𝑦, 𝐴𝑧⏟  ⏞  
A

) = (−𝜙,A).

(!!) Именно удлинённый импульс соответствует классическому кинематическому импульсу:

𝒫𝑖 =

(︃
𝑚𝑐√︀

1− 𝑣2/𝑐2
,

𝑚v√︀
1− 𝑣2/𝑐2

)︃
= 𝑚

𝑑𝑥𝑖

𝑑𝜏
.

(!!!) Зато именно обобщённый импульс является каноническим в классической гамильтоновой механике
(через него обычно пишутся уравнения Гамильтона), для него пишутся канонические коммутационные
соотношения в квантовой механике и он выражается через оператор частной производной:

𝑃𝑖 = −iℏ𝜕𝑖, [𝑃𝑖, 𝑥̂
𝑗 ] = −iℏδ𝑗𝑖 .

2Именно обобщённый импульс является в теоретической механике «импульсом по умолчанию». В частности временная
компонента именно обобщённого импульса связана с гамильтонианом: 𝑃0 = − 1

𝑐
𝐻.
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Функция Гамильтона в присутствии электромагнитного поля 𝐻(𝑥𝛼, 𝑃𝛼) получается из функции Га-
мильтона без электромагнитного поля 𝐻0(𝑥

𝛼, 𝑝𝛼) так:

−1

𝑐
𝐻0(𝑥

𝛼, 𝑝𝛼) = 𝑝0 → −1

𝑐
𝐻0(𝑥

𝛼, 𝑃𝛼 − 𝑞
𝑐𝐴𝛼) = 𝑃0⏟ ⏞ 

− 1
𝑐𝐻

− 𝑞
𝑐 𝐴0⏟ ⏞ 

𝜙

.

Отсюда получаем
𝐻(𝑥𝛼, 𝑃𝛼) = 𝐻0(𝑥

𝛼, 𝑃𝛼 − 𝑞
𝑐𝐴𝛼(𝑡, 𝑥)) + 𝑞𝜙(𝑡, 𝑥).

В частности для нерелятивистской частицы

𝐻0(r,p) =
p2

2𝑚
→ 𝐻(r,P) =

(P− 𝑞
𝑐A(𝑡, r))2

2𝑚
+ 𝑞𝜙(𝑡, r),

а для релятивистской частицы

𝐻0(r,p) =
√︀
𝑚2𝑐4 + 𝑐2p2 → 𝐻(r,P) =

√︁
𝑚2𝑐4 + 𝑐2(P− 𝑞

𝑐A(𝑡, r))2 + 𝑞 𝜙(𝑡, r).

В квантовой теории взаимодействие с электромагнитным полем вводится с помощью той же подста-
новки (5.1) с точностью до шляпок:

𝑝𝑖 = (− ℰ̂
𝑐 , 𝑝𝑥, 𝑝𝑦, 𝑝𝑧⏟  ⏞  

p̂

) → 𝒫𝑖 := 𝑃𝑖 −
𝑞

𝑐
𝐴𝑖. (5.2)

(!!!) Именно обобщённые импульсы в квантовой механики превращаются в дифференциальные операторы
вида −iℏ𝜕𝑖.

Перепишем подстановку (5.2) через операторы дифференцирования (поделим все операторы на −iℏ):

𝜕𝑖 = (𝜕0, 𝜕𝑥, 𝜕𝑦, 𝜕𝑧⏟  ⏞  
𝜕

) → ∇𝑖 = (∇0,∇) := 𝜕𝑖 − i 𝑞𝑐ℏ𝐴𝑖 = ( 1𝑐𝜕𝑡 + i 𝑞𝑐ℏ𝜙⏟  ⏞  
∇0=

1
𝑐∇𝑡

, 𝜕 − i 𝑞𝑐ℏA⏟  ⏞  
∇=∇⃗

). (5.3)

(О) Мы определили ковариантную (или удлинённую) производную, которую обозначили символом набла
∇𝑖.

Чтобы ввести взаимодействие с электромагнитным полем мы заменяем простые производные на ко-
вариантные, или удлиняем производные.

(**) На первый взгляд может показаться, что для ковариантной производной не выполняется прави-
ло Лейбница для дифференцирования произведения. Чтобы правило Лейбница для ковариантной про-
изводной выполнялось, надо каждому полю приписать электрический заряд, и складывать заряды при
умножении функций:

∇𝑖(𝜑1𝜑2) = 𝜕𝑖(𝜑1𝜑2)− i 𝑞1+𝑞2𝑐ℏ 𝐴𝑖(𝜑1𝜑2) =
[︀
𝜕𝑖𝜑1 − i 𝑞1𝑐ℏ𝐴𝑖𝜑1

]︀⏟  ⏞  
∇𝑖𝜑1

𝜑2 + 𝜑1
[︀
𝜕𝑖𝜑2 − i 𝑞2𝑐ℏ𝐴𝑖𝜑2

]︀⏟  ⏞  
∇𝑖𝜑2

. (5.4)

При комплексном сопряжении поля заряд поля меняет знак:

∇𝑖𝜑 = 𝜕𝑖𝜑− i 𝑞𝑐ℏ𝐴𝑖𝜑, ⇒ ∇𝑖𝜑
* = 𝜕𝑖𝜑

* + i 𝑞𝑐ℏ𝐴𝑖𝜑
*.

Для вещественного поля заряд равен нулю и ковариантная производная совпадает с обычной3. Потенци-
алы 𝐴𝑖 вещественны, а значит им соответствует нулевой заряд.

Ковариантные производные по разным координатам, в отличие от обычных частных производных не
коммутируют между собой. Их коммутатор пропорционален тензору электромагнитного поля 𝐹𝑖𝑗 (5.9):

[∇𝑖,∇𝑗 ] = [𝜕𝑖 − i 𝑞𝑐ℏ𝐴𝑖(𝑥), 𝜕𝑗 − i 𝑞𝑐ℏ𝐴𝑗(𝑥)] = [𝜕𝑖,−i 𝑞𝑐ℏ𝐴𝑗(𝑥)] + [−i 𝑞𝑐ℏ𝐴𝑖(𝑥), 𝜕𝑗 ] = −i 𝑞𝑐ℏ (𝜕𝑖𝐴𝑗 − 𝜕𝑗𝐴𝑖)⏟  ⏞  
𝐹𝑖𝑗

= −i 𝑞𝑐ℏ 𝐹𝑖𝑗 .

(5.5)
То же коммутационное соотношение можно переписать через удлинённые импульсы

[𝒫𝑖,𝒫𝑗 ] = i 𝑞ℏ𝑐 𝐹𝑖𝑗 . (5.6)
3Термин «вещественное поле» здесь означает, что область определения соответствующей функции лежит в множестве

вещественных чисел и такую функцию нельзя умножить на фазовый множитель. Комплексное поле в какой-то конфигурации
может принимать только вещественные значения, но вещественным оно от этого не станет, так как его всё равно можно
умножить на фазовый множитель.
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5.4 Калибровочные преобразования
Пусть имеется комплексное поле 𝜓(𝑥), уравнение которого является линейным однородным (нас ин-

тересуют уравнения Шрёдингера, Клейна–Фока–Гордона и Дирака). Например, это поле может быть
волновой функцией.

(О) Глобальное калибровочное преобразование — это умножение комплексного поля 𝜓(𝑥) на постоян-
ный («глобальный») фазовый множитель ei𝛼 (𝛼 = const ∈ R).

При глобальном калибровочном преобразовании поле и все его производные умножаются на один и тот
же фазовый множитель. Если уравнение поля линейное однородное, то фазовый множитель выносится за
скобки и решения уравнения переходят в решения. Глобальное калибровочное преобразование является
симметрией теории. Причём никакие измеримые на эксперименте величины при таком преобразовании
не меняются, таким образом глобальное калибровочное преобразования связывает между собой разные
описания одного и того же состояния поля (в отличие от, например, координатного сдвига, который
связывает между собой разные состояния поля).

(О) Локальное калибровочное преобразование — это умножение комплексного поля 𝜓(𝑥) на переменный
(«локальный») фазовый множитель ei𝛼(𝑥) (𝛼 — гладкая вещественная функция от точки 𝑥 ∈ R4).

Поле и его частные производные при локальном калибровочном преобразовании изменяются по-
разному:

𝜓 → 𝜓′ = ei𝛼𝜓, 𝜕𝑖𝜓 → 𝜕𝑖
(︀
ei𝛼𝜓

)︀
= ei𝛼 (𝜕𝑖𝜓 + i(𝜕𝑖𝛼)𝜓)⏟  ⏞  

похоже на ковариантную производную

.

Поскольку после вынесения за скобки фазового множителя осталось выражение, похожее на ковариант-
ную производную, посмотрим как будет преобразовываться ковариантная производная:

∇𝑖𝜓 → ∇′
𝑖𝜓

′ = ∇′
𝑖

(︀
ei𝛼𝜓

)︀
= 𝜕𝑖

(︀
ei𝛼𝜓

)︀
− i 𝑞𝑐ℏ𝐴

′
𝑖e

i𝛼𝜓

∇′
𝑖𝜓

′ = ei𝛼
(︀
𝜕𝑖𝜓 + i(𝜕𝑖𝛼)𝜓 − i 𝑞𝑐ℏ𝐴

′
𝑖𝜓
)︀
= ei𝛼

(︀
𝜕𝑖𝜓 − i 𝑞𝑐ℏ [𝐴′

𝑖 − 𝑐ℏ
𝑞 𝜕𝑖𝛼]⏟  ⏞  

𝐴𝑖

𝜓
)︀
.

Мы видим, что если одновременно с полем 𝜓 преобразовать ковекторный потенциал 𝐴𝑖, то ковариантная
производная при калибровочном преобразовании также будет умножаться на фазовый множитель:

𝜓(𝑥) → 𝜓′(𝑥) = ei𝛼(𝑥)𝜓(𝑥),

𝐴𝑖(𝑥) → 𝐴′
𝑖 = 𝐴𝑖(𝑥) +

𝑐ℏ
𝑞 𝜕𝑖𝛼(𝑥),

∇𝑖𝜓(𝑥) → ∇′
𝑖𝜓

′(𝑥) = ei𝛼(𝑥)∇𝑖𝜓(𝑥).

Если уравнение поля является линейным однородным, причём все производные в нём ковариантные
(в таком виде можно записать уравнения Шрёдингера, Паули, Клейна–Фока–Гордона и Дирака для за-
ряженной частицы в электромагнитном поле), то при калибровочном преобразовании оно умножается на
фазовый множитель ei𝛼(𝑥). При этом решение уравнения переходит в решение.

Полученное преобразование ковекторного потенциала уже знакомо нам из классической электродина-
мики, где оно называется калибровочным (градиентным) преобразованием:

𝐴𝑖(𝑥) → 𝐴′
𝑖(𝑥) = 𝐴𝑖(𝑥) + 𝜕𝑖𝑓(𝑥). (5.7)

Или в трёхмерных обозначениях

A(𝑡, r) → A′(𝑡, r) = A(𝑡, r) + 𝜕𝑓(𝑡, r), 𝜙(𝑡, r) → 𝜙′(𝑡, r) = 𝜙(𝑡, r)− 1
𝑐𝜕𝑡𝑓(𝑡, r). (5.8)

В нашем случае
𝑓(𝑥) = 𝑐ℏ

𝑞 𝛼(𝑥).

При калибровочном преобразовании изменяются потенциалы, а само электромагнитное поле остаётся
неизменным.

Тензор электромагнитного поля:

𝐹𝑖𝑗 = 𝜕𝑖𝐴𝑗 − 𝜕𝑗𝐴𝑖 = 𝜕𝑖𝐴
′
𝑗 − 𝜕𝑗𝐴

′ =

⎛⎜⎜⎝
0 −𝐸𝑥 −𝐸𝑦 −𝐸𝑧
𝐸𝑥 0 𝐵𝑧 −𝐵𝑦
𝐸𝑦 −𝐵𝑧 0 𝐵𝑥
𝐸𝑧 𝐵𝑦 −𝐵𝑥 0

⎞⎟⎟⎠ . (5.9)

В трёхмерных обозначениях

B = rotA = rotA′, E = −𝜕𝜙− 1
𝑐𝜕𝑡A = −𝜕𝜙′ − 1

𝑐𝜕𝑡A
′.
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Глава 6

Уравнение Клейна–Фока–Гордона

6.1 Свободное уравнение Клейна–Фока–Гордона

Энергия классической свободной релятивистской частицы имеет вид

ℰ =
√︀
𝑚2𝑐4 + 𝑐2p2.

Мы можем сопоставить этому уравнению уравнение Шрёдингера стандартным образом, сделав замену
p → −iℏ𝜕, ℰ → iℏ𝜕𝜕𝑡 и домножить получившееся равенство справа на волновую функцию:

iℏ
𝜕𝜓

𝜕𝑡
=
√︀
𝑚2𝑐4 − 𝑐2ℏ2△⏟  ⏞  

𝐻̂

𝜓. (6.1)

В принципе квадратный корень из дифференциального оператора даже можно извлечь1 (такой ко-
рень удобнее извлекать в импульсном представлении), но лучше от корня избавиться возведя исходное
выражение в квадрат

ℰ2 = 𝑚2𝑐4 + 𝑐2p2.

После этого сделав ту же подстановку и снова домножить получившееся равенство справа на волновую
функцию:

−ℏ2
𝜕2𝜑

𝜕𝑡2
=
(︀
𝑚2𝑐4 − 𝑐2ℏ2△

)︀
𝜑.

(О) Получившееся уравнение называется свободным уравнением Клейна–Фока–Гордона2 (далее уравнение
КФГ).

(ф) В уравнении КФГ не случайно вместо волновой функции 𝜓 появилось поле 𝜑. Как мы увидим
далее, это поле не может быть проинтерпретировано как волновая функция. Тем не менее, поле 𝜑 может
рассматриваться почти как настоящая волновая функция до тех пор, пока энергии рассматриваемых
процессов малы по сравнению с 𝑚𝑐2. Последовательное рассмотрение уравнения КФГ производится в
квантовой теории поля, в которой само поле 𝜑 становится оператором.

Уравнение КФГ удобно переписать в релятивистски-инвариантом виде через волновой оператор

(︀
𝑚2𝑐4 − 𝑐2ℏ22

)︀
𝜑 = 0, 2 = △− 1

𝑐2
𝜕2

𝜕𝑡2
. (6.2)

1Если энергии не слишком велики по сравнению с 𝑚𝑐2, то корень можно разложить в ряд

√︀
𝑚2𝑐4 − 𝑐2ℏ2△ = 𝑚𝑐2

√︃
1−

ℏ2

𝑚2𝑐2
△ ≈ 𝑚𝑐2⏟ ⏞ 

const

−
ℏ2

2𝑚
△⏟  ⏞  

ℰкин.нерелят.

+
ℏ4

8𝑚3𝑐2
△2⏟  ⏞  

релятив.поправка

получив малую релятивистскую поправку к оператору нерелятивистской кинетической энергии частицы.
2Это уравнение было получено Шрёдингером ещё до уравнения Шрёдингера, но из уравнения Клейна–Фока–Гордона

получился неправильный спектр атома водорода, поэтому Шрёдингер не стал его публиковать.
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6.2 Уравнение непрерывности для уравнения КФГ

6.2.1 Вспоминаем уравнение непрерывности для уравнения Шрёдингера
Напомним как получить уравнение непрерывности для обычного уравнения Шрёдингера

𝜕𝑡𝜓 =
1

iℏ

(︂
− ℏ2

2𝑚
𝜕2 + 𝑈(r)

)︂
⏟  ⏞  

𝐻̂

𝜓.

Уравнение домножается на 𝜓* и добавляется комплексно-сопряжённое выражение

𝜓*𝜕𝑡𝜓 + 𝜓𝜕𝑡𝜓
* = 𝜓* 1

iℏ
𝐻̂𝜓 + 𝜓

1

−iℏ
(𝐻̂𝜓)*.

В получившимся выражении выделяются производная по времени и дивергенция:

𝜕𝑡 (𝜓
*𝜓)⏟  ⏞  
𝜌

= 𝜓* iℏ
2𝑚

𝜕2𝜓 − 𝜓
iℏ
2𝑚

𝜕2𝜓* = −𝜕 −iℏ
2𝑚

(︁
𝜓*𝜕𝜓 − 𝜓𝜕𝜓*

)︁
⏟  ⏞  

j

.

Получается уравнение непрерывности
𝜕𝑡𝜌+ 𝜕j = 0,

в котором плотность вероятности и плотность потока вероятности имеют вид

𝜌(𝑡, r) = 𝜓*(𝑡, r)𝜓(𝑡, r), j(𝑡, r) = − iℏ
2𝑚

(︁
𝜓*𝜕𝜓 − 𝜓𝜕𝜓*

)︁
=
𝜓*(p̂𝜓) + 𝜓(p̂𝜓)*

2𝑚
=

1

𝑚
Re
(︁
𝜓*p̂𝜓

)︁
.

6.2.2 Вывод уравнения непрерывности для КФГ
Уравнение непрерывности для КФГ выведем аналогично вышеизложенному. Выпишем уравнение КФГ

(6.2) (︀
𝑚2𝑐4 − 𝑐2ℏ2𝜕𝑖𝜕𝑖

)︀
𝜑 = 0, 𝜕𝑖𝜕

𝑖 = 2 = △− 1

𝑐2
𝜕2

𝜕𝑡2
.

Домножим уравнение КФГ слева на 𝜑* и вычтем (чтобы, как раньше, вторые производные входили с
разными знаками) комплексно-сопряжённое выражение:

𝜑*
(︀
𝑚2𝑐4 − 𝑐2ℏ2𝜕𝑖𝜕𝑖

)︀
𝜑−𝜑

(︀
𝑚2𝑐4 − 𝑐2ℏ2𝜕𝑖𝜕𝑖

)︀
𝜑* = −𝑐2ℏ2𝜑*𝜕𝑖𝜕𝑖𝜑+𝑐2ℏ2𝜑𝜕𝑖𝜕𝑖𝜑* = −𝑐2ℏ2𝜕𝑖(𝜑*𝜕𝑖𝜑−𝜑𝜕𝑖𝜑*) = 0.

Выберем 4-мерную плотность тока

𝑗𝑖 = − iℏ
2𝑚

(𝜑*𝜕𝑖𝜑− 𝜑𝜕𝑖𝜑*) =
(︁ iℏ
2𝑚

(𝜑*𝜕0𝜑− 𝜑𝜕0𝜑
*)⏟  ⏞  

𝑐𝜌

,
−iℏ
2𝑚

(𝜑*𝜕𝜑− 𝜑𝜕𝜑*)⏟  ⏞  
j

)︁
.

Коэффициент − iℏ
2𝑚 обязательно должен быть мнимым, чтобы ток 𝑗𝑖 был вещественным, а конкретное

значение этого коэффициента выбрано из соответствия с уравнением Шрёдингера для пространственной
плотности тока j.

Видно, что ковариантные компоненты плотности тока 𝑗𝑖 получаются из 3-мерной плотности тока 𝑗𝛼
добавлением временно́й компоненты 𝑗0 = −𝑗0 = −𝑐𝜌, которая выражается через производные 𝜕0 = 1

𝑐𝜕𝑡
также как 𝑗𝛼 через пространственные производные 𝜕𝛼.

Таким образом, по сравнению с уравнением Шрёдингера плотность 𝜌 поменялась, а плотность тока
осталась прежней:

𝜌 =
iℏ

2𝑚𝑐2
(𝜑*𝜕𝑡𝜑− 𝜑𝜕𝑡𝜑

*), j = − iℏ
2𝑚

(𝜑*𝜕𝜑− 𝜑𝜕𝜑*).

𝜕𝑖𝑗
𝑖 = 𝜕𝑡𝜌+ 𝜕j = 0.

В уравнении КФГ в заданный момент времени поле 𝜑 и его временна́я производная 𝜕𝑡𝜑 могут быть
заданы независимо. Из-за этого плотность 𝜌 может быть как положительной, так и отрицательной, а
значит 𝜌 больше нельзя интерпретировать как плотность вероятности, следовательно поле 𝜑 не может
быть волновой функцией.

(***) Плотность 𝜌 интерпретируется как плотность числа частиц, причём уравнение КФГ оказывает-
ся описывает не одну частицу, а все частицы определённого сорта, считая античастицы со знаком минус.
Описание частиц оказывается неотделимым от описания античастиц, что приводит к возможности отри-
цательной плотности. Рассмотрение уравнения КФГ как многочастичного уравнения связано с переходом
от квантовой механики к квантовой теории поля и выходит за рамки данного курса.
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6.3 Уравнение КФГ в электромагнитном поле*
Чтобы вставить в уравнение взаимодействие с электромагнитным полем мы можем, как и в нереля-

тивистском случае, «удлинить производные». Это делается в соответствии с правилом (5.2), (5.3).

𝑝𝑖 → 𝒫𝑖 = 𝑃𝑖 −
𝑞

𝑐
𝐴𝑖(𝑥), 𝜕𝑖 → ∇𝑖 = 𝜕𝑖 − i

𝑞

𝑐ℏ
𝐴𝑖(𝑥).

Уравнение КФГ приобретает вид (︀
𝑚2𝑐4 − 𝑐2ℏ2∇𝑖∇𝑖

)︀
𝜑 = 0.

Если раскрыть ковариантные производные уравнение КФГ в присутствии электромагнитного поля рас-
писывается так (︂

𝑚2𝑐4 − 𝑐2ℏ2𝜕𝑖𝜕𝑖 +
(︁ 𝑞
𝑐ℏ

)︁2
𝐴𝑖𝐴

𝑖 + i
𝑞

𝑐ℏ
𝜕𝐴𝑖

𝜕𝑥𝑖
+ i2

𝑞

𝑐ℏ
𝐴𝑖𝜕𝑖

)︂
𝜑 = 0.

Плотность тока числа частиц также получается заменой производных на ковариантные3:

𝑗𝑖 = − iℏ
2𝑚

(𝜑*∇𝑖𝜑− 𝜑∇𝑖𝜑*) =
(︁ iℏ
2𝑚

(𝜑*∇0𝜑− 𝜑∇0𝜑
*)⏟  ⏞  

𝑐𝜌

,
−iℏ
2𝑚

(𝜑*∇𝜑− 𝜑∇𝜑*)⏟  ⏞  
j

)︁
.

При этом полю 𝜑 соответствует заряд +𝑞, а полю 𝜑* — заряд −𝑞, так что

∇𝑖𝜑 = 𝜕𝑖𝜑− i 𝑞𝑐ℏ𝐴𝑖𝜑, ∇𝑖𝜑
* = 𝜕𝑖𝜑

* + i 𝑞𝑐ℏ𝐴𝑖𝜑
*.

Если раскрыть ковариантные производные плотность и поток частиц4 в присутствии электромагнит-
ного поля расписывается так

𝜌 =
iℏ
2𝑚𝑐

(𝜑*∇0𝜑− 𝜑∇0𝜑
*) =

iℏ
2𝑚𝑐2

(𝜑*𝜕𝑡𝜑− 𝜑𝜕𝑡𝜑
*) +

𝑞

𝑚𝑐2
𝜑*𝜑 𝐴0⏟ ⏞ 

−𝜙

,

j = − iℏ
2𝑚

(𝜑*∇𝜑− 𝜑∇𝜑*) = − iℏ
2𝑚

(𝜑*𝜕𝜑− 𝜑𝜕𝜑*)− 𝑞

𝑚𝑐
𝜑*𝜑A.

В уравнении непрерывности тоже можно поставить ковариантные производные, но плотность тока
𝑗𝑖 вещественна, а значит ей приписывается заряд нуль и ковариантная производная не отличается от
обычной:

∇𝑖⏟ ⏞ 
𝜕𝑖

𝑗𝑖 = ∇𝑡⏟ ⏞ 
𝜕𝑡

𝜌+ ∇⏟ ⏞ 
𝜕

j = 0.

Всё, что было сказано в § 5.4 про калибровочные преобразования полностью применимо к уравнению
КФГ в присутствии электромагнитного поля.

3Вывод полностью аналогичен с учётом того, что для ковариантной производной работает правило Лейбница.
4Если нужны плотность и поток заряда, то данные выражения надо умножить на 𝑞.
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Глава 7

Уравнение Дирака

7.1 Свободное уравнение Дирака
Уравнение Шрёдингера линейно по временно́й производной, т. е., с учётом соответствия ℰ → iℏ𝜕𝜕𝑡 ,

оно линейно по энергии. Если мы хотим релятивистски инвариантное уравнение Шрёдингера, в которое
энергия и импульс (в соответствии со специальной теорией относительности) входят равноправно, то
нужно придумать гамильтониан линейный по импульсу, т. е. надо всё же извлечь квадратный корень в
уравнении (6.1), причём получившееся выражение должно быть линейно по импульсу:

𝐻̂𝐷 =
√︀
𝑚2𝑐4 + 𝑐2p̂2 = 𝑚𝑐2𝛽 + 𝑐(𝛼̂,p) = 𝑚𝑐2𝛽 + 𝑐𝛼̂𝑥𝑝𝑥 + 𝑐𝛼̂𝑦𝑝𝑦 + 𝑐𝛼̂𝑧𝑝𝑧.

Конечно, 𝛼̂ = (𝛼̂𝑥, 𝛼̂𝑦, 𝛼̂𝑧) не может быть обычным (с числовыми компонентами) вектором, а 𝛽 не мо-
жет быть числом. Но Дирак догадался искать коэффициенты 𝛼̂𝑥, 𝛼̂𝑦, 𝛼̂𝑧, 𝛽 в виде не чисел, а операторов
(матриц).

В силу однородности пространства (чтобы для свободной частицы сохранялся импульс) коэффициен-
ты 𝛼𝜇, 𝛽 не должны зависеть от пространственных координат, а значит они коммутируют с импульсом.
Аналогично в силу однородности времени (чтобы для свободной частицы сохранялась энергия) эти коэф-
фициенты не должны зависеть от времени.

Найдём условия, которым должны удовлетворять коэффициенты 𝛼̂𝜇, 𝛽 (индексы 𝜇, 𝜈 = 1, 2, 3 нумеруют
пространственные компоненты векторов1):

𝐻̂2
𝐷 = 𝑚2𝑐4 + 𝑐2p̂2 =

(︁
𝑚𝑐2𝛽 + 𝑐𝛼̂𝜇𝑝𝜇

)︁(︁
𝑚𝑐2𝛽 + 𝑐𝛼̂𝜈𝑝𝜈

)︁
=

= 𝑚2𝑐4 𝛽2⏟ ⏞ 
1̂

+𝑚𝑐3 (𝛽𝛼̂𝜇 + 𝛼̂𝜇𝛽)⏟  ⏞  
0

𝑝𝜇 + 𝑐2
𝛼̂𝜇𝛼̂𝜈 + 𝛼̂𝜈 𝛼̂𝜇

2⏟  ⏞  
1̂ δ𝜇𝜈

𝑝𝜇𝑝𝜈 .

(О) Чтобы записать получившиеся соотношения удобно использовать антикоммутатор:

[𝐴, 𝐵̂]+ = 𝐴𝐵̂ + 𝐵̂𝐴. (7.1)

Антикоммутационные соотношения для коэффициентов 𝛽, 𝛼̂𝜇 имеют вид

[𝛽, 𝛽]+ = 21̂,

[𝛽, 𝛼̂𝜇]+ = 0, (7.2)
[𝛼̂𝜇, 𝛼̂𝜈 ]+ = 21̂δ𝜇𝜈 .

Таким образом, все четыре коэффициента в квадрате дают единичный оператор и антикоммутируют друг
с другом.

Подберём подходящие матрицы 𝛽, 𝛼̂𝜇. В силу эрмитовости гамильтониана все эти матрицы также
эрмитовы. Поскольку 𝛽−1 = 𝛽 = 𝛽†, 𝛼̂−1

𝜇 = 𝛼̂𝜇 = 𝛼̂†
𝜇 эти матрицы одновременно являются унитарными, а

все собственные числа этих матриц равны ±1.
Можно легко показать, что след этих матриц равен нулю:

𝛽𝛼̂𝜇 = −𝛼̂𝜇𝛽 ⇒ 𝛽2𝛼̂𝜇 = 𝛼̂𝜇 = −𝛽𝛼̂𝜇𝛽 ⇒ tr 𝛼̂𝜇 = − tr(𝛽𝛼̂𝜇𝛽) = − tr 𝛼̂𝜇 = 0;

1По повторяющимся (в одночлене) индексам подразумевается суммирование, индексы, по которым идёт суммирование
(свёртка) можно переименовывать. Тензоры и тензорные обозначения можно вспомнить по книге МТП глава 1.2 «Тензоры»
и глава 1.7 «Кинематика и геометрия СТО».
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𝛽𝛼̂𝜇 = −𝛼̂𝜇𝛽 ⇒ 𝛽𝛼̂2
𝜇 = 𝛽 = −𝛼̂𝜇𝛽𝛼̂𝜇 ⇒ tr𝛽 = − tr(𝛼̂𝜇𝛽𝛼̂𝜇) = − tr𝛽 = 0.

Следовательно собственные числа +1 и −1 у каждой матрицы должны присутствовать в равном количе-
стве. Поскольку других собственных числе нет, получается, что размерность матриц обязательно чётная.

Матрицы 𝛽, 𝛼̂𝜇 обязательно линейно независимы. Предположим обратное: пусть

𝛽 =
∑︁
𝜈

𝑐𝜈 𝛼̂𝜈 ⇒ [𝛽, 𝛼̂𝜇]+ =

[︃∑︁
𝜈

𝑐𝜈 𝛼̂𝜈 , 𝛼̂𝜇

]︃
+

=
∑︁
𝜈

𝑐𝜈21̂δ𝜇𝜈 = 21̂𝑐𝜇 ̸= 0.

Размер матриц 2× 2 не подходит, поскольку среди эрмитовых матриц 2× 2 линейное подпространство
матриц с нулевым следом имеет размерность 3 (в качестве базиса могут быть выбраны матрицы Паули2).

Следовательно, матрицы 𝛽, 𝛼̂𝜇 должны иметь размерность не ниже 4. Причём эти матрицы определены
с точностью до унитарного преобразования. Так что одну из них можно выбрать диагональной. Пусть
это будет 𝛽, которую возьмём в виде

𝛽 =

⎛⎜⎜⎝
1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

⎞⎟⎟⎠ =

(︂
1̂2 0

0 −1̂2

)︂
= 𝜎𝑧 ⊗ 1̂2.

Здесь 1̂2 — единичная матрица 2× 2.
Матрицы 𝛼𝜇 антикоммутирующие с 𝛽 можно выбрать в виде (cos𝐴𝜎𝑥 + sin𝐴𝜎𝑦) ⊗ 𝑐𝜇, причём 𝑐𝜇

должны удовлетворять антикоммутационным соотношениям

[𝑐𝜇, 𝑐𝜈 ]+ = 21̂2δ𝜇𝜈 .

Простейший вариант: выбрать 𝐴 = 0, 𝑐𝜇 = 𝜎𝜇.
Итак, мы постулируем3 удовлетворяющие антикоммутационным соотношениям (7.2) матрицы:

𝛽 =

⎛⎜⎜⎝
1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

⎞⎟⎟⎠ =

(︂
1̂2 0

0 −1̂2

)︂
= 𝜎𝑧 ⊗ 1̂2, 𝛼̂𝜇 =

(︂
0 𝜎𝜇
𝜎𝜇 0

)︂
= 𝜎𝑥 ⊗ 𝜎𝜇.

𝛼̂𝑥 =

⎛⎜⎜⎝
0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

⎞⎟⎟⎠ , 𝛼̂𝑦 =

⎛⎜⎜⎝
0 0 0 −i
0 0 i 0
0 −i 0 0
i 0 0 0

⎞⎟⎟⎠ , 𝛼̂𝑧 =

⎛⎜⎜⎝
0 0 1 0
0 0 0 −1
1 0 0 0
0 −1 0 0

⎞⎟⎟⎠ .

Уравнение Дирака имеет вид обычного временно́го уравнения Шрёдингера с гамильтонианом Дирака:

iℏ𝜕𝑡𝜓 =
(︁
𝑚𝑐2𝛽 + 𝑐(𝛼̂, p̂)

)︁
𝜓, (7.3)

iℏ𝜕𝑡𝜓 =
(︁
𝑚𝑐2𝛽 − iℏ𝑐(𝛼̂, 𝜕)

)︁
𝜓. (7.4)

Но теперь волновая функция — столбец из 4-х строк, а сопряжённая (эрмитово) волновая функция —
строка из 4-х элементов:

𝜓(𝑥) =

⎛⎜⎜⎝
𝜓1(𝑥)
𝜓2(𝑥)
𝜓3(𝑥)
𝜓4(𝑥)

⎞⎟⎟⎠ , 𝜓†(𝑥) = (𝜓*
1(𝑥), 𝜓

*
2(𝑥), 𝜓

*
3(𝑥), 𝜓

*
4(𝑥)) .

(!) Четыре компоненты волновой функции не соответствуют четырём пространственно-временным
координатам! Они преобразуются по-другому и образуют не вектор, а 4-компонентный (дираковский)
спинор. Что это такое мы обсудим далее.

2На всякий случай напомним явный вид матриц Паули и формулу их умножения:

𝜎𝑥 =

(︂
0 1
1 0

)︂
, 𝜎𝑦 =

(︂
0 −i
i 0

)︂
, 𝜎𝑧 =

(︂
1 0
0 −1

)︂
; 𝜎𝜇𝜎𝜈 = 1̂2δ𝜇𝜈 + iε𝜇𝜈𝜆𝜎𝜆.

3Все предыдущие рассуждения — наводящие соображения. В них главное, что размерность 4 минимальна.
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Вместо 𝜌(𝑥) = 𝜓*𝜓 теперь надо рассматривать

𝜌(𝑥) = 𝜓†𝜓 = 𝜓*
1𝜓1 + 𝜓*

2𝜓2 + 𝜓*
3𝜓3 + 𝜓*

4𝜓4 =

4∑︁
𝑖=1

|𝜓𝑖|2 ⩾ 0.

В качестве первого шага к пониманию физического смысла 4-компонентного спинора рассмотрим ре-
шения уравнения Дирака не зависящие от пространственных координат 𝜓(𝑡, 𝑥, 𝑦, 𝑧) = 𝜓0(𝑡) (т. е. состояния
с нулевым импульсом). Для таких волновых функций стационарное уравнение Дирака (т. е. стационарное
уравнение Шрёдингера для гамильтониана Дирака) имеет вид

𝑚𝑐2𝛽𝜓0 = 𝐸0𝜓0.

Для выбранной нами матрицы 𝛽

𝐸01 = 𝐸02 = +𝑚𝑐2, 𝐸03 = 𝐸04 = −𝑚𝑐2; (7.5)

𝜓01 =

⎛⎜⎜⎝
1
0
0
0

⎞⎟⎟⎠ , 𝜓02 =

⎛⎜⎜⎝
0
1
0
0

⎞⎟⎟⎠ , 𝜓03 =

⎛⎜⎜⎝
0
0
1
0

⎞⎟⎟⎠ , 𝜓04 =

⎛⎜⎜⎝
0
0
0
1

⎞⎟⎟⎠ . (7.6)

Мы видим, что при нулевом импульсе первые две компоненты спинора соответствуют энергии +𝑚𝑐2, т. е.
энергии покоя частицы с массой 𝑚, а третья и четвёртая компоненты соответствуют отрицательной энер-
гии −𝑚𝑐2. При малых импульсах (в нерелятивистском случае) можно ожидать, что будут доминировать
первые две компоненты спинора и мы получим двухкомпонентный спинор вместо четырёхкомпонентного.
Сигма-матрицы в структуре матриц 𝛼𝜇 явно намекают, что две компоненты связаны со спином 1

2 , в чём
мы убедимся далее.

7.2 Уравнение непрерывности для уравнения Дирака

Уравнение непрерывности для уравнения Дирака можно получить также как мы получали для урав-
нения Шрёдингера (см. 6.2.1 «Вспоминаем уравнение непрерывности для уравнения Шрёдингера») с
заменой 𝜓* на 𝜓†. Берём уравнение Дирака обычное и эрмитово сопряжённое

𝜕𝑡𝜓 =
𝑚𝑐2

iℏ
𝛽𝜓 − 𝑐(𝛼̂, 𝜕)𝜓,

𝜕𝑡𝜓
† = −𝑚𝑐

2

iℏ
𝜓†𝛽 − 𝑐(𝜕𝜓†, 𝛼̂).

Во втором уравнении матрицы 𝛽, 𝛼̂𝜇 действуют на строку 𝜓† справа, частная производная 𝜕 по-прежнему
слева.

Домножаем первое уравнение слева на 𝜓†, а второе справа на 𝜓 и складываем то, что получилось

𝜓†𝜕𝑡𝜓 + (𝜕𝑡𝜓
†)𝜓 = 𝜓†𝑚𝑐

2

iℏ
𝛽𝜓 − 𝑐𝜓†(𝛼̂, 𝜕)𝜓 − 𝑚𝑐2

iℏ
𝜓†𝛽𝜓 − 𝑐(𝜕𝜓†, 𝛼̂)𝜓

и получаем уравнение непрерывности

𝜕𝑡 (𝜓
†𝜓)⏟  ⏞  
𝜌

= −𝜕 (𝑐𝜓†𝛼𝜓)⏟  ⏞  
j

и видим чему равны плотность вероятности и плотность потока вероятности

𝜌(𝑥) = 𝜓†𝜓, j(𝑥) = 𝑐𝜓†𝛼𝜓. (7.7)

Величина 𝜌 неотрицательно, так что мы можем её интерпретировать как плотность вероятности, а функ-
цию 𝜓 — как волновую функцию у которой появился дополнительный дискретный аргумент, нумерующий
строки дираковского спинора.

(ф) В уравнении Дирака волновой функция 𝜓 может рассматриваться почти как настоящая волновая
функция до тех пор, пока энергии рассматриваемых процессов малы по сравнению с 𝑚𝑐2. Последова-
тельное рассмотрение уравнения Дирака производится в квантовой теории поля, в которой само поле 𝜓
становится оператором.
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7.3 Стационарные состояния для уравнения Дирака

Для гамильтониана Дирака можно поставить задачу на собственные числа и собственные функции.
Поскольку гамильтониан Дирака коммутирует с компонентами импульса (в следствие того, что инвари-
антен относительно произвольных координатных сдвигов), можно искать стационарные состояния среди
состояний с постоянным импульсом (плоских монохроматических волн).

В силу блочного вида матрица 𝛽, 𝛼𝜇 4-компонентный спинор представим как комбинацию двух 2-
компонентных:

𝜓(𝑥) =

⎛⎜⎜⎝
𝜓1(𝑥)
𝜓2(𝑥)
𝜓3(𝑥)
𝜓4(𝑥)

⎞⎟⎟⎠ =

(︂
𝜑1(𝑥)
𝜑2(𝑥)

)︂
, 𝜑1(𝑥) =

(︂
𝜓1(𝑥)
𝜓2(𝑥)

)︂
, 𝜑2(𝑥) =

(︂
𝜓3(𝑥)
𝜓4(𝑥)

)︂
. (7.8)

Стационарное уравнение Дирака (стационарное уравнение Шрёдинрега для гамильтониана Дирака):(︁
𝑚𝑐2𝛽 + 𝑐(𝛼̂, p̂)

)︁
𝜓𝐸 = 𝐸𝜓𝐸 .

Ищем собственную функцию в виде

𝜓𝐸 = 𝜓p0 =

(︂
𝑢1
𝑢2

)︂
ei

rp0
ℏ ,

где 𝑢1, 𝑢2 — не зависящие от координат 2-компонентные столбцы (спиноры).
Подставляем 𝜓p0 в уравнение (︁

𝑚𝑐2𝛽 + 𝑐(𝛼̂,p0)
)︁
𝜓p0 = 𝐸p0𝜓p0 .

Оператор импульса p̂ в левой части равенства заменился на значение импульса в данном состоянии p0.
Теперь на множитель ei

rp0
ℏ можно сократить. Получаем(︂

𝑚𝑐2
(︂

1̂2 0

0 −1̂2

)︂
+ 𝑐

(︂
0 (𝜎,p0)

(𝜎,p0) 0

)︂)︂(︂
𝑢1
𝑢2

)︂
= 𝐸p0

(︂
𝑢1
𝑢2

)︂
.

(︂
𝑚𝑐21̂2 𝑐(𝜎,p0)

𝑐(𝜎,p0) −𝑚𝑐21̂2

)︂(︂
𝑢1
𝑢2

)︂
= 𝐸p0

(︂
𝑢1
𝑢2

)︂
. (7.9)

Для нахождения собственных чисел получается вековое уравнение

det

(︂
(𝑚𝑐2 − 𝐸p0)1̂2 𝑐(𝜎,p0)

𝑐(𝜎,p0) −(𝑚𝑐2 + 𝐸p0)1̂2

)︂
= 0.

Для вычисления определителя удобно воспользоваться формулой Шура4

det
(︀
(𝑚𝑐2 − 𝐸p0)1̂2

)︀
det
(︀
−(𝑚𝑐2 + 𝐸p0)1̂2 − 𝑐(𝜎,p0)(𝑚𝑐

2 − 𝐸p0)
−11̂2𝑐(𝜎,p0)

)︀
=

= (𝑚𝑐2 − 𝐸p0)
2

[︂
−(𝑚𝑐2 + 𝐸p0)−

𝑐2p0
2

𝑚𝑐2 − 𝐸p0

]︂2
=

=
[︀
𝐸2

p0
− (𝑚𝑐2)2 − 𝑐2p0

2
]︀2

= 0.

Вековое уравнение имеет два двукратных корня

𝐸p0 = ±
√︀
𝑚2𝑐4 + 𝑐2p0

2. (7.10)

Благодаря 2-кратному вырождению уровней при заданном ненулевом импульсе одну из двухкомпонент-
ных амплитуд 𝑢1, 𝑢2 можно задать произвольно, а вторую выразить через неё. 4-компонентное уравнение

4Выведем формулу Шура:(︂
𝐴−1 0

−𝐶𝐴−1 1̂

)︂(︂
𝐴 𝐵̂

𝐶 𝐷̂

)︂
⏟  ⏞  

𝑀

=

(︂
1̂ 𝐴−1𝐵̂

0 𝐷̂ − 𝐶𝐴−1𝐵̂

)︂
⇒ det𝑀 = det𝐴 det(𝐷̂ − 𝐶𝐴−1𝐵̂).
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(7.9) можно выписать как два 2-компонентных уравнения, которые при энергиях (7.10) оказываются ли-
нейно зависимы:

𝑚𝑐2𝑢1 + 𝑐(𝜎,p0)𝑢2 = 𝐸p0𝑢1,

𝑐(𝜎,p0)𝑢1 −𝑚𝑐2𝑢2 = 𝐸p0𝑢2.

Отсюда можно выразить 𝑢1, 𝑢2 друг через друга

𝑢1 =
𝑐(𝜎,p0)𝑢2
𝐸p0 −𝑚𝑐2

,

𝑢2 =
𝑐(𝜎,p0)𝑢1
𝐸p0 +𝑚𝑐2

= 1
𝑐 (𝜎,v 1

2
)𝑢1.

Для положительное энергии удобно представить стационарное состояние в виде

𝜓p0 =

(︂
𝑢1

1
𝑐 (𝜎,v 1

2
)𝑢1

)︂
ei

rp0
ℏ . (7.11)

Здесь v 1
2

— такая скорость, что два преобразования Лоренца с такой скоростью дадут одно преобразование
Лоренца со скоростью vкл. =

𝑐p0

𝐸p0
, соответствующей классической скорости частицы:

v 1
2
=

𝑐2p0

𝐸p0 +𝑚𝑐2
.

При малых импульсах v 1
2
≈ 1

2vкл..
Для найденного решения плотность вероятности и плотность потока вероятности (7.7) имеют вид

𝜌 = 𝑢†1𝑢1 + 𝑢†2𝑢2 = 𝑢†1𝑢1 +
𝑢†1𝑐(𝜎,p0)

𝐸p0 +𝑚𝑐2
𝑐(𝜎,p0)𝑢1
𝐸p0 +𝑚𝑐2

= 𝑢†1𝑢1

(︂
1 +

𝑐2p0
2

(𝐸p0 +𝑚𝑐2)2

)︂
= 𝑢†1𝑢1

2𝐸p0

𝐸p0 +𝑚𝑐2
;

j = (𝑢†1, 𝑢
†
2)

(︂
0 𝜎
𝜎 0

)︂(︂
𝑢1
𝑢2

)︂
=

(︃
𝑢†1,

𝑢†1𝑐(𝜎,p0)

𝐸p0 +𝑚𝑐2

)︃(︂
0 𝜎
𝜎 0

)︂(︃
𝑢1

𝑐(𝜎,p0)𝑢1

𝐸p0+𝑚𝑐
2

)︃
= 𝑐

𝑢†1{𝜎(𝜎,p0) + (𝜎,p0)𝜎}𝑢1
𝐸p0 +𝑚𝑐2

.

Выражение в фигурных скобках легко раскрыть через свёртки и произведения 𝜎𝜇𝜎𝜈 :

𝜎(𝜎,p0) + (𝜎,p0)𝜎 = 2p0.

Получаем

j = 𝑢†1𝑢1
2𝑐p0

𝐸p0 +𝑚𝑐2
=
𝑐p0

𝐸p0

𝜌 = vкл.𝜌.

Отношение 𝑐p0

𝐸p0
= vкл. — это классическая (т. е. такая, как в неквантовой СТО) скорость релятивистской

частицы с импульсом p0 и энергией 𝐸p0 .

7.4 Частицы и античастицы
Энергетический спектр гамильтониана Дирака для свободной частицы включает два полуинтервала

(−∞,−𝑚𝑐2] и [𝑚𝑐2,+∞) разделённых щелью (−𝑚𝑐2,+𝑚𝑐2). Самое неприятное с термодинамической точ-
ки зрения, что этот спектр неограничен снизу: термодинамического равновесия с таким энергетическим
спектром существовать не может.

В принципе аналогичный энергетический спектр был и у классической функции Гамильтона свободной
релятивистской частицы 𝐻 =

√︀
𝑚2𝑐4 + 𝑐2p2.

В классическом случае возможность сколь угодно больших отрицательных энергий нас не волновала,
поскольку отрицательные энергии отделены от положительных щелью (−𝑚𝑐2,+𝑚𝑐2), а энергия класси-
ческой частицы может меняться только непрерывно.

В квантовом случае, провзаимодействовав с другими частицами, наша частица через щель может
«перепрыгнуть», подобно тому, как квантовая частица может протуннелировать через потенциальный
барьер, преодолеть который классической частице не хватило бы энергии. Частице термодинамически вы-
годно уходить всё ниже и ниже по энергиям, выделяя во внешнюю среду сколь угодно большую энергию.
Получается некий «вечный двигатель нулевого рода», работающий за счёт нарушения нулевого начала
термодинамики (постулата о существовании термодинамического равновесия).
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Спасает ситуацию то, что уравнение Дирака описывает фермионы, а согласно принципу запрета Па-
ули, в каждом состоянии число фермионов может быть либо 0, либо 1 (либо, как обычно в квантовой
механике, суперпозиция 0 и 1). Дирак предложил считать, вакуум5 — это не отсутствие частиц, вакуум
— это состояние с минимальной энергией. Тогда в вакуумном состоянии поля Дирака все состояния с
отрицательной энергией заполнены (море Дирака), а все состояния с положительной энергией свободны.
Полная энергия вакуума оказывается равна −∞, но мы этим пренебрегаем: энергия определена с точ-
ностью до константы, будем отсчитывать энергию поля и другие сохраняющиеся величины от вакуума,
тогда энергия, импульс, момент импульса и заряд вакуума по определению равна нулю.

Если дираковскому вакууму сообщить энергию больше, чем ширина щели 2𝑚𝑐2, то можно частицу с
отрицательной энергией перевести в состояние с положительной энергией. При это у нас будет заполнено
одно состояние с положительной энергией и останется свободным одно состояния с отрицательной энер-
гией (дырка). Родится пара частица-дырка (обратный процесс к рождению пары — аннигиляция пары).
Если не хватает (по сравнению с вакуумным состоянием) частицы с энергией −𝐸, импульсом −p и проек-
цией спина −𝑚𝑠 и зарядом 𝑞, то такое состояние имеет энергию +𝐸, импульс +p и проекцию спина +𝑚𝑠

и заряд −𝑞. Все эти величины мы приписывает дырке. Поскольку

𝐸2 = 𝑚2𝑐4 + 𝑐2p2,

масса дырки строго равна массе частицы.
Таким образом дырка в море Дирака ведёт себя как частица с положительной энергией +𝐸 той же

массы, что и частица с противоположными зарядами по отношению к частице.

дырка = античастица.

(!) Частица с отрицательной энергией античастицей не является. Античастица — это отсутствие части-
цы с отрицательной энергией.

Когда мы введём операторы рождения и уничтожения для фермионов, то окажется, что они равно-
правны: какой из пары операторов объявить оператором рождения, а какой — оператором уничтожения,
— дело удобства. Поэтому между заполненными и незаполненными состояниями есть симметрия. Можно
сказать, что рождение фермиона — это уничтожение дырки, а уничтожение фермиона — рождение дырки.

Принято считать электрон частицей, а позитрон (антиэлектрон) — античастицей. Хотя какой фермион
из пары назначить частицей, а какой — античастицей, — вопрос соглашения.

(п) В физике конденсированного состояния по аналогии с квантовой теорией поля состояние с ми-
нимальной энергией называют вакуумом, на фоне которого могут возникать «электроны» и дырки. В
таком «вакууме» все электронные состояния в кристалле с энергией ниже энергии Ферми заполнены, а
все состояния с энергией выше энергии Ферми свободны. «Электроны» учитываются только те, которые
приобрели энергию выше энергии Ферми, дырки — незаполненные электронные состояния с энергией ни-
же энергии Ферми. В физике твёрдого тела идеальной симметрии между электронами и дырками, как
для поля Дирака, уже нет, в частности зависимости энергии от квазиимпульса у них разные (а значит и
массы разные), но все заряды для них по-прежнему противоположны.

7.5 Момент импульса дираковской частицы

Гамильтониан Дирака по построению (поскольку матрицы 𝛽, 𝛼𝜇 не зависят от пространственных коор-
динат) симметричен по отношению к пространственным сдвигам, что предполагает сохранение импульса.
Исследуем теперь симметрию по отношению к поворотам. Для этого вычислим коммутатор гамильтони-
ана с компонентами обезразмеренного орбитального момента 𝑙̂𝜇 = 1

ℏε𝜇𝜈𝜆𝑥̂𝜈𝑝𝜆.

[𝐻̂𝐷, 𝑙̂𝜇] =

[︂
𝑚𝑐2𝛽 + 𝑐(𝛼̂𝜅𝑝𝜅),

1

ℏ
ε𝜇𝜈𝜆𝑥̂𝜈𝑝𝜆

]︂
=
𝑐

ℏ
ε𝜇𝜈𝜆𝛼̂𝜅 [𝑝𝜅, 𝑥̂𝜈 ]⏟  ⏞  

−iℏδ𝜅𝜈

𝑝𝜆 = −i𝑐ε𝜇𝜅𝜆𝛼̂𝜅𝑝𝜆 = −i𝑐[𝛼̂× p̂]𝜇.

Операторы орбитального момента являются генераторами поворотов координатной подсистемы, такие
повороты вращают пространство не затрагивая компонент спинора. Как мы знаем для частиц со спи-
ном повороты также «перепутывают» спиновую волновую функцию. Поэтому попробуем найти спиновый
вклад в момент импульса.

Мы уже убедились, что при нулевом импульсе две компоненты спинора соответствуют энергии +𝑚𝑐2,
а две — энергии −𝑚𝑐2 (7.6), оператор спина не должен перепутывать эти две пары компонент между

5См. также КПКМ-1.1.9 «Вакуум» (стр. 19).
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собой. Поэтому в вместо матриц Паули в выражении для спина 𝑠𝜇 = 1
2𝜎𝜇 попробуем взять матрицы Σ𝜇,

которые на первую и на вторую пару компонент действуют по отдельности как матрицы Паули:

Σ𝜇 =

(︂
𝜎𝜇 0
0 𝜎𝜇

)︂
= 1̂2 ⊗ 𝜎𝜇.

Σ𝑥 =

⎛⎜⎜⎝
0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

⎞⎟⎟⎠ , Σ𝑦 =

⎛⎜⎜⎝
0 −i 0 0
i 0 0 0
0 0 0 −i
0 0 i 0

⎞⎟⎟⎠ , Σ𝑧 =

⎛⎜⎜⎝
1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 −1

⎞⎟⎟⎠ .

[𝛼̂𝜇,Σ𝜈 ] =

[︂(︂
0 𝜎𝜇
𝜎𝜇 0

)︂
,

(︂
𝜎𝜈 0
0 𝜎𝜈

)︂]︂
=

(︂
0 [𝜎𝜇, 𝜎𝜈 ]

[𝜎𝜇, 𝜎𝜈 ] 0

)︂
= 2iε𝜇𝜈𝜆𝛼̂𝜆,

[︁
𝛽,Σ𝜈

]︁
= 0. (7.12)

[𝐻̂𝐷,
1
2Σ𝜇] =

[︁
𝑚𝑐2𝛽 + 𝑐(𝛼̂𝜆𝑝𝜆),

1
2 Σ̂𝜇

]︁
= 𝑐

[︁
𝛼̂𝜆,

1
2 Σ̂𝜇

]︁
⏟  ⏞  

iε𝜆𝜇𝜅𝛼̂𝜅

𝑝𝜆 = i𝑐ε𝜇𝜅𝜆𝛼̂𝜅𝑝𝜆 = i𝑐[𝛼̂× p̂]𝜇

Мы видим, что половинки матриц Σ𝜇 удовлетворяют коммутационным соотношениям для момента
импульса:

𝑠𝜇 = 1
2Σ𝜇, [𝑠𝜇, 𝑠𝜈 ] = iε𝜇𝜈𝜆𝑠𝜆.

Сумма квадратов компонент позволяет определить значение момента:

ˆ⃗𝑠2 =
1

4

(︀
Σ2
𝑥 +Σ2

𝑦 +Σ2
𝑧

)︀
=

1

4

(︂
𝜎2
𝑥 + 𝜎2

𝑦 + 𝜎2
𝑧 0

0 𝜎2
𝑥 + 𝜎2

𝑦 + 𝜎2
𝑧

)︂
=

1

4

(︂
31̂2 0

0 31̂2

)︂
=

3

4
1̂.

3
4 = 𝑠(𝑠+ 1) = 1

2 (
1
2 + 1), так что дираковская частица имеет спин 1

2 .
Компоненты 𝑙̂𝜇 и 𝑠𝜈 коммутируют между собой, поскольку эти операторы действуют на разные аргу-

менты волновой функции (𝑙̂𝜇 — на координаты, 𝑠𝜈 — на дискретный аргумент, нумерующий строки), т. е.
эти операторы относятся к разным подсистемам (координатной и спиновой)

[𝑙̂𝜇, 𝑠𝜈 ] = 0.

Также мы видим, что суммы компонент орбитального момента с 𝑠𝜇 также удовлетворяют коммутаци-
онным соотношениям для момента импульса:

𝑗̂𝜇 = 𝑙̂𝜇 + 𝑠𝜇,
[︁
𝑗̂𝜇, 𝑗̂𝜈

]︁
= iε𝜇𝜈𝜆𝑗̂𝜆.

Причём 𝑗̂𝜇 коммутируют с гамильтонианом Дирака:

[𝐻̂𝐷, 𝑗̂𝜇] = [𝐻̂𝐷, 𝑙̂𝜇] + [𝐻̂𝐷, 𝑠𝜇] = −i𝑐[𝛼̂× p̂]𝜇 + i𝑐[𝛼̂× p̂]𝜇 = 0.

Итак, у нас возник вектор с эрмитовыми компонентами ĵ, который коммутирует с гамильтонианом Ди-
рака, а значит он является сохраняющейся величиной и он порождает преобразованиям симметрии. Этот
вектор — сумма орбитального момента импульса с некоторой добавкой, что означает, что для дираковской
частицы момент импульса кроме орбитального момента содержит ещё некоторый дополнительный вклад
(спиновый момент). Таким образом ĵ — полный (орбитальный + спиновый) момент импульса частицы.
Все свойства момента импульса, которые мы выводили из коммутационных соотношений справедливы
для ĵ.

Унитарный оператор

𝑅̂𝜑n = e−i𝜑(n,̂j)⏟  ⏞  
поворот

= e−i𝜑(n,̂l)⏟  ⏞  
координатный поворот

спиновый поворот⏞  ⏟  
e−i𝜑(n,̂s)

— это оператор поворота на угол 𝜑 вокруг оси n (|n| = 1). Этот оператор разлагается на координатную
часть и спиновую часть, которые коммутируют, поскольку действуют на разные переменные волновой
функции.
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7.6 Преобразования Лоренца*
Преобразования Лоренца должны переводить стационарные состояния с определённым импульсом

(см. § 7.3) друг в друга (с точностью до множителя), при этом 4-импульсы этих состояний должны
преобразовываться как 4-векторы.

Кроме того, чистые (без примеси поворотов) преобразования Лоренца (бусты) должны быть связаны
с поворотами так, как полагается в соответствии со структурой группы Лоренца (комбинируя бусты по
разным направлениям можно получить чистый поворот6).

Задача выглядит довольно устрашающей, но представление бустов и поворотов в экспоненциальной
форме (т. е. использование математического аппарата теории групп и алгебр Ли) существенно её облег-
чает.

Пусть оператор активного7 поворота вокруг оси 𝑥𝜇 на угол 𝜑 записан в экспоненциальном виде:

𝑅̂𝜑,𝜇 = e𝜑𝑏̂𝜇 .

Для поворота 𝑅̂𝜑n на угол 𝜑 вокруг оси, заданной единичным вектором n, генератор получается линейной
комбинацией генераторов поворотов вокруг координатных осей

𝑅̂𝜑n = e𝜑(b̂,n).

Аналогично, пусть активный буст на быстроту8 𝜗 вдоль оси 𝑥𝜇 записан как

Λ̂𝜗,𝜇 = e𝜗𝑎̂𝜇 .

Для буста Λ̂𝜗n с быстротой 𝜗 вдоль направления, заданного единичным вектором n, генератор получается
линейной комбинацией генераторов бустов по координатным осям

Λ̂𝜗n = e𝜗(â,n).

Чтобы найти коммутационные соотношения для генераторов поворотов и бустов воспользуемся пред-
ставлением гурппы Лоренца как группы преобразований 4-мерных векторов (линии отделяют временны́е
строку и столбец). Генераторы в этом представлении имеют вид9

𝑏̂𝑥 =

⎛⎜⎜⎝
0 0 0 0
0 0 0 0
0 0 0 −1
0 0 1 0

⎞⎟⎟⎠ , 𝑏̂𝑦 =

⎛⎜⎜⎝
0 0 0 0
0 0 0 1
0 0 0 0
0 −1 0 0

⎞⎟⎟⎠ , 𝑏̂𝑧 =

⎛⎜⎜⎝
0 0 0 0
0 0 −1 0
0 1 0 0
0 0 0 0

⎞⎟⎟⎠ .

𝑎̂𝑥 =

⎛⎜⎜⎝
0 1 0 0
1 0 0 0
0 0 0 0
0 0 0 0

⎞⎟⎟⎠ , 𝑎̂𝑦 =

⎛⎜⎜⎝
0 0 1 0
0 0 0 0
1 0 0 0
0 0 0 0

⎞⎟⎟⎠ , 𝑎̂𝑧 =

⎛⎜⎜⎝
0 0 0 1
0 0 0 0
0 0 0 0
1 0 0 0

⎞⎟⎟⎠ .

Легко найти соответствующие коммутационные соотношения:[︁
𝑏̂𝜇, 𝑏̂𝜈

]︁
= ε𝜇𝜈𝜆𝑏̂𝜆, [𝑎̂𝜇, 𝑎̂𝜈 ] = −ε𝜇𝜈𝜆𝑏̂𝜆,

[︁
𝑎̂𝜇, 𝑏̂𝜈

]︁
= ε𝜇𝜈𝜆𝑎̂𝜆, (7.13)

Для дираковских спиноров, надо подобрать генераторы с теми же коммутационными соотношениями
(7.13).

Как мы уже установили в § 7.5
𝑏̂𝜇 = − i

2Σ𝜇.

Нам осталось подобрать генераторы 𝑎̂𝜇.
Эти матрицы не могут быть блочно-диагональны, как матрицы Σ, что видно из того, что (см. § 7.3) при

нулевом импульсе стационарного состояния обязательно 𝜑1 или 𝜑2 обращается в нуль, а при ненулевом
импульсе такое невозможно.

Кроме того, можно ожидать, что генераторы бустов, как и генераторы поворотов будут удобно выра-
жаться через матрицы Паули. Естественно попробовать на эту роль матрицы 𝛼̂𝛾 .

[𝛼̂𝜇, 𝛼̂𝜈 ] =

(︂
[𝜎𝜇, 𝜎𝜈 ] 0

0 [𝜎𝜇, 𝜎𝜈 ]

)︂
= 2iε𝜇𝜈𝜆Σ𝜆

6См. задачу 25 (§ 1.8.8) и её решение (§ 2.8.8) в книге МТП.
7Активное преобразование меняет физическую систему, пассивное — систему координат.
8По определению быстрота связана 𝜗 со скоростью 𝑣 формулой 𝑣 = 𝑐 · th𝜗. При последовательном выполнении бустов

вдоль одного направления складываются не скорости, а быстроты.
9См. § 1.8.6 в книге МТП.
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Также вспоминаем (7.12):
[𝛼̂𝜇,Σ𝜈 ] = 2iε𝜇𝜈𝜆𝛼̂𝜆.

Мы видим, что правильные коммутационные соотношения (7.13) получаются при

𝑎̂𝜇 = 1
2 𝛼̂𝜇.

Выпишем явно операторы преобразований Лоренца в полученном представлении:

𝛼̂𝜇 =

(︂
0 𝜎𝜇
𝜎𝜇 0

)︂
, (𝛼̂,n) =

(︂
0 (𝜎,n)

(𝜎,n) 0

)︂
, (𝛼̂,n)

2
= 1̂, (𝛼̂,n)

2𝑘+1
= (𝛼̂,n) , (𝛼̂,n)

2𝑘
= 1̂;

Λ̂𝜗n = e𝜗(â,n) = e
1
2𝜗(𝛼̂,n) = 1̂ ch 𝜗

2 + (𝛼̂,n) sh 𝜗
2 =

(︂
1̂2 ch 𝜗

2 (𝜎̂,n) sh 𝜗
2

(𝜎̂,n) sh 𝜗
2 1̂2 ch 𝜗

2

)︂
Посмотрим как изменяется стационарное состояние уравнения Дирака, соответствующее нулевому

импульсу и энергии +𝑚𝑐2. Зависимость от пространственно-временных координат ei
𝑥𝑖𝑝𝑖

ℏ — это скалярный
множитель выражающийся через свёртку 𝑥𝑖𝑝𝑖, в нём 𝑥𝑖 и 𝑝𝑖 преобразуются как 4-мерные векторы:

𝑝𝑖(v = 0) = (𝑚𝑐, 0⃗) → 𝑝𝑖(v = 𝑐 · th(𝜗)n) = (ch(𝜗)𝑚𝑐⏟  ⏞  
1
𝑐𝐸p0

, sh(𝜗)𝑚𝑐n⏟  ⏞  
p0

).

Нас же интересует преобразование 4-компонентной спинорной амплитуды.(︂
1̂2 ch 𝜗

2 (𝜎̂,n) sh 𝜗
2

(𝜎̂,n) sh 𝜗
2 1̂2 ch 𝜗

2

)︂(︂
𝑢1
0

)︂
=

(︂
ch 𝜗

2 𝑢1
sh 𝜗

2 (𝜎̂,n)𝑢1

)︂
= ch 𝜗

2

(︂
𝑢1

th 𝜗
2 (𝜎̂,n)𝑢1

)︂
, (7.14)

v 1
2
= 𝑐 · th 𝜗

2 n =
𝑐2p0

𝐸p0 +𝑚𝑐2

Мы видим, что получившийся спинор в точности соответствует амплитуде в (7.11).
В отличие от вращения, преобразование Лоренца не сохраняет скалярный квадрат спинора, так преоб-

разование (7.14) переводит спинор с единичным скалярным квадратом в спинор со скалярным квадратом
ch2 𝜗2 + sh2 𝜗2 = ch𝜗.

7.7 Уравнение Дирака в электромагнитном поле
Чтобы вставить в уравнение взаимодействие с электромагнитным полем мы можем, как и в нереля-

тивистском случае и в случае уравнения Клейна–Фока–Гордона, «удлинить производные». Это делается
в соответствии с правилом (5.2), (5.3).

𝑝𝑖 → 𝒫𝑖 = 𝑃𝑖 −
𝑞

𝑐
𝐴𝑖(𝑥), 𝜕𝑖 → ∇𝑖 = 𝜕𝑖 − i

𝑞

𝑐ℏ
𝐴𝑖(𝑥).

Уравнение Дирака приобретает вид

−𝑐𝒫0𝜓 =
(︁
𝑚𝑐2𝛽 + 𝑐(𝛼̂, 𝒫̂)

)︁
𝜓, (7.15)

iℏ∇𝑡𝜓 =
(︁
𝑚𝑐2𝛽 − iℏ𝑐(𝛼̂,∇)

)︁
𝜓. (7.16)

Не строит торопиться раскрывать удлинённые импульсы (ковариантные производные). Для преобразова-
ний часто удобно записывать уравнение Дирака в форме (7.15) или (7.16).

Если раскрыть ковариантные производные уравнение Дирака в присутствии электромагнитного поля
расписывается так

iℏ𝜕𝑡𝜓 =
(︁
𝑚𝑐2𝛽 + 𝑐(𝛼̂, 𝒫̂) + 𝑞𝜙(𝑥)

)︁
𝜓 =

(︁
𝑚𝑐2𝛽 + 𝑐(𝛼̂, P̂)− 𝑞(𝛼̂,A(𝑥)) + 𝑞𝜙(𝑥)

)︁
⏟  ⏞  

𝐻̂𝐷э.м.

𝜓 = (7.17)

=
(︁
𝑚𝑐2𝛽 − iℏ𝑐(𝛼̂, 𝜕)− 𝑞(𝛼̂,A(𝑥)) + 𝑞𝜙(𝑥)

)︁
𝜓.

Формулы для плотности вероятности и плотность потока вероятности для уравнения Дирака не вклю-
чают производных, а потому остаются прежними.

𝜌(𝑥) = 𝜓†𝜓, j(𝑥) = 𝑐𝜓†𝛼𝜓. (7.18)
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В уравнении непрерывности тоже можно поставить ковариантные производные, но плотность вероят-
ности 𝜌 и плотность потока вероятности j вещественны, а значит им приписывается заряд нуль и ковари-
антная производная не отличается от обычной:

∇𝑡⏟ ⏞ 
𝜕𝑡

𝜌+ ∇⏟ ⏞ 
𝜕

j = 0.

Всё, что было сказано в § 5.4 про калибровочные преобразования полностью применимо к уравнению
Дирака в присутствии электромагнитного поля.

7.8 Уравнение Паули
Для многих практических задач полезно перейти от релятивистского уравнения Дирака для ча-

стицы в электромагнитном поле к нерелятивистскому пределу. В нерелятивистском пределе вместо 4-
компонентных спиноров у нас должны остаться 2-компонентные. Поэтому перепишем уравнение Дирака
(7.15) через 2-компонентные спиноры 𝜑1, 𝜑2 (7.8):

−𝑐𝒫0

(︂
𝜑1
𝜑2

)︂
=

(︂
𝑚𝑐2

(︂
1̂2 0

0 −1̂2

)︂
+

(︂
0 (𝜎, 𝑐𝒫̂)

(𝜎, 𝑐𝒫̂) 0

)︂)︂(︂
𝜑1
𝜑2

)︂

(−𝑐𝒫0 −𝑚𝑐2)𝜑1 = (𝜎, 𝑐𝒫̂)𝜑2, (7.19)

(−𝑐𝒫0 +𝑚𝑐2)𝜑2 = (𝜎, 𝑐𝒫̂)𝜑1. (7.20)

При рассмотрении стационарных состояний свободной дираковской частицы мы уже видели, что для
частиц с положительной энергией доминирует 𝜑1, а для частиц с отрицательной энергией — 𝜑2, для не
слишком сильного электромагнитного поля в силу непрерывности эта ситуация должна сохраняться. Мы
будем рассматривать частицы с положительной энергией, а значит 𝜑2 будет малой поправкой.

Перепишем уравнение (7.20):

(−𝑐𝒫0 +𝑚𝑐2)𝜑2 = (𝑚𝑐2 −𝑞𝜙⏟ ⏞ 
𝑜(𝑚𝑐2)

+ iℏ𝜕𝑡⏟ ⏞ 
≈𝑚𝑐2

)𝜑2 = 2𝑚𝑐2𝜑2 + (−𝑐𝒫0 −𝑚𝑐2)𝜑2⏟  ⏞  
малая поправка

= (𝜎, 𝑐𝒫̂)𝜑1.

Потенциальная энергия 𝑞𝜙 на фоне 𝑚𝑐2 мала, также считаем, что в суперпозиции доминируют энергии
частицы близкие к 𝑚𝑐2, т. е. iℏ𝜕𝑡𝜑2 ≈ 𝑚𝑐2𝜑2.

Получаем точную формулу для 𝜑2, которую удобно использовать для метода последовательных при-
ближений

𝜑2 =
(𝜎, 𝑐𝒫̂)𝜑1

2𝑚𝑐2
+

𝑐𝒫0 +𝑚𝑐2

2𝑚𝑐2⏟  ⏞  
∼
⃒⃒⃒
𝑞𝜙−(𝐸−𝑚𝑐2)

2𝑚𝑐2

⃒⃒⃒
=𝜖≪1

𝜑2. (7.21)

Видно, что при построении ряда последовательных приближений слагаемое с номером 𝑛 пропорционально
𝜖𝑛, что обеспечивает сходимость ряда.

В нулевом приближении 𝜑(0)2 = 0. Подставляем нулевое приближение в правую часть равенства (7.21)
и получаем первое приближение:

𝜑
(1)
2 =

(𝜎, 𝑐𝒫̂)𝜑1
2𝑚𝑐2

. (7.22)

Во втором приближении получится

𝜑
(2)
2 =

(𝜎, 𝑐𝒫̂)𝜑1
2𝑚𝑐2

+
𝑐𝒫0 +𝑚𝑐2

2𝑚𝑐2
𝜑
(1)
2 =

(𝜎, 𝑐𝒫̂)𝜑1
2𝑚𝑐2

+
𝑐𝒫0 +𝑚𝑐2

2𝑚𝑐2
(𝜎, 𝑐𝒫̂)𝜑1

2𝑚𝑐2
, (7.23)

а в третьем —

𝜑
(3)
2 =

(𝜎, 𝑐𝒫̂)𝜑1
2𝑚𝑐2

+
𝑐𝒫0 +𝑚𝑐2

2𝑚𝑐2
𝜑
(2)
2 =

(𝜎, 𝑐𝒫̂)𝜑1
2𝑚𝑐2

+
𝑐𝒫0 +𝑚𝑐2

2𝑚𝑐2
(𝜎, 𝑐𝒫̂)𝜑1

2𝑚𝑐2
+
𝑐𝒫0 +𝑚𝑐2

2𝑚𝑐2
𝑐𝒫0 +𝑚𝑐2

2𝑚𝑐2
(𝜎, 𝑐𝒫̂)𝜑1

2𝑚𝑐2
.

(7.24)
Приведённая выше оценка на дробь

⃒⃒⃒
𝑐𝒫0+𝑚𝑐

2

2𝑚𝑐2

⃒⃒⃒
∼
⃒⃒⃒
𝑞𝜙−(𝐸−𝑚𝑐2)

2𝑚𝑐2

⃒⃒⃒
= 𝜖≪ 1 показывает, что в рассматриваемом

приближении ряд будет сходиться10. По приведённым частичным суммам ряда видна закономерность,
10Ряд будет сходиться на соответствующем функциональном подпространстве, но если есть хотя бы небольшая примесь

состояний с энергией достаточно сильно отличающейся от 𝑚𝑐2, то для достаточно больших степеней ряд «испортится».
Подробнее см. главу 0.
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ряд соответствует ожидаемому из (7.21) выражению

𝜑2 =

(︃
1̂− 𝑐𝒫0 +𝑚𝑐2

2𝑚𝑐2

)︃−1
(𝜎, 𝑐𝒫̂)

2𝑚𝑐2
𝜑1.

Для уравнения Паули нам достаточно первого приближения. Подставив (7.22) в уравнение (7.19) по-
лучаем уравнение Паули

(−𝑐𝒫0 −𝑚𝑐2)𝜑1 =
(𝜎, 𝒫̂)2

2𝑚
𝜑1. (7.25)

Если раскрыть удлинённые импульсы, получаем

iℏ𝜕𝑡𝜑1 =

(︃
𝑚𝑐2 + 𝑞𝜙+

(𝜎, P̂− 𝑞
𝑐A)2

2𝑚

)︃
𝜑1. (7.26)

Преобразуем числитель дроби:(︁
𝜎, P̂− 𝑞

𝑐
A
)︁2

= 𝜎𝜇𝜎𝜈⏟  ⏞  
1̂2δ𝜇𝜈+iε𝜇𝜈𝜆𝜎𝜆

(︁
𝑃𝜇 − 𝑞

𝑐
𝐴𝜇

)︁(︁
𝑃𝜈 −

𝑞

𝑐
𝐴𝜈

)︁
=

=
(︁
P̂− 𝑞

𝑐
A
)︁2

− iε𝜇𝜈𝜆𝜎𝜆
𝑞

𝑐
𝑃𝜇𝐴𝜈⏟  ⏞  

𝐴𝜈𝑃𝜇+[𝑃𝜇, 𝐴𝜈 ]⏟  ⏞  
−iℏ 𝜕𝐴𝜈

𝜕𝑥𝜇

−iε𝜇𝜈𝜆𝜎𝜆
𝑞

𝑐
𝐴𝜇𝑃𝜈 =

=
(︁
P̂− 𝑞

𝑐
A
)︁2

− 𝑞ℏ
𝑐
ε𝜇𝜈𝜆𝜎𝜆

𝜕𝐴𝜈
𝜕𝑥𝜇

=
(︁
P̂− 𝑞

𝑐
A
)︁2

− 𝑞ℏ
𝑐
(𝜎, rotA⏟  ⏞  

B

).

После этого уравнение Паули переписывается так

iℏ𝜕𝑡𝜑1 =

(︃
𝑚𝑐2 + 𝑞𝜙+

(P̂− 𝑞
𝑐A)2

2𝑚
− 𝑞ℏ

2𝑚𝑐
(𝜎,B)

)︃
𝜑1. (7.27)

Добавка 𝑚𝑐2 в гамильтониане — это константа, её можно выкинуть сделав замену11

𝜑1 = e−i𝑚𝑐2𝑡
ℏ 𝜓п. (7.28)

Также мы узнаём в коэффициенте перед (𝜎,B) магнетон Бора (если в качестве 𝑞 взять элементарный
заряд 𝑒):

𝜇0 =
𝑞ℏ
2𝑚𝑐

.

С учётом ˆ⃗𝑠 = 1
2𝜎 получаем уравнение Паули в стандартном виде

iℏ𝜕𝑡𝜓п =

⎛⎜⎝
(︁
P̂− 𝑞

𝑐A(𝑡, r)
)︁2

2𝑚
+ 𝑞 𝜙(𝑡, r)−

(︁
2𝜇0

ˆ⃗𝑠,B(𝑡, r)
)︁⎞⎟⎠

⏟  ⏞  
𝐻̂п

𝜓п. (7.29)

Оно получается из уравнения Шрёдингера нерелятивистской свободной частицы удлинением производных
(5.2), (5.3) и добавлением члена, который соответствует потенциальной энергии −(𝜇,B) взаимодействия
магнитного дипольного момента 𝜇 = 2𝜇0

ˆ⃗𝑠 с магнитным полем B.

(!) Обратите внимание, для орбитального момента коэффициент пропорциональности между ˆ⃗
𝑙 и маг-

нитным моментом орбитального движения 𝜇орб. равен магнетону Бора 𝜇0. Для спинового момента коэф-
фициент пропорциональности вдвое больше и равен 2𝜇0.

11Эта замена — частный случай калибровочного преобразования (см. § 5.4), когда мы делаем добавку к скалярному
потенциалу 𝛿𝜙, чтобы 𝑞 𝛿𝜙 компенсировало 𝑚𝑐2.
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7.8.1 Уравнение непрерывности для уравнения Паули
Выведем плотность вероятности и плотность потока вероятности для уравнения Паули из соответству-

ющих формул для уравнения Дирака (7.18)

𝜌(𝑥) = 𝜓†𝜓 = 𝜑†1𝜑1 + 𝜑†2𝜑2, j(𝑥) = 𝑐𝜓†𝛼𝜓 = 𝑐𝜑†1𝜎𝜑2 + 𝑐𝜑†2𝜎𝜑1.

Возьмём 𝜑2 и 𝜑†2 в первом приближении (7.22) (как при выводе уравнения Пали)

𝜑2 =
(𝜎, 𝒫̂)𝜑1

2𝑚𝑐
=

−iℏ
2𝑚𝑐

𝜎𝜈(∇𝜈𝜑1), 𝜑†2 =
iℏ
2𝑚𝑐

(∇𝜇𝜑
†
1)𝜎𝜇

𝜌(𝑥) = 𝜑†1𝜑1 +
iℏ
2𝑚𝑐

(∇𝜇𝜑
†
1)𝜎𝜇

−iℏ
2𝑚𝑐

𝜎𝜈(∇𝜈𝜑1)⏟  ⏞  
сомнительный член

(7.30)

Вызывает сомнение второе слагаемое (вклад 𝜑†2𝜑2), поскольку оно относится к следующему порядку ма-
лости.

𝑗𝜅(𝑥) = 𝜑†1𝜎𝜅
−iℏ
2𝑚

𝜎𝜈(∇𝜈𝜑1) +
iℏ
2𝑚

(∇𝜈𝜑
†
1)𝜎𝜈𝜎𝜅𝜑1 =

=
−iℏ
2𝑚

(︁
𝜑†1(∇𝜅𝜑1)− (∇𝜅𝜑

†
1)𝜑1

)︁
+

−iℏ
2𝑚

(︁
𝜑†1iε𝜅𝜈𝜆𝜎𝜆(∇𝜈𝜑1)− (∇𝜈𝜑

†
1)iε𝜈𝜅𝜆𝜎𝜆𝜑1

)︁
=

=
−iℏ
2𝑚

(︁
𝜑†1(𝜕𝜅𝜑1)− (𝜕𝜅𝜑

†
1)𝜑1

)︁
− 𝑞

𝑚𝑐
𝐴𝜅𝜑

†
1𝜑1 +

ℏ
2𝑚

ε𝜅𝜈𝜆 ∇𝜈⏟ ⏞ 
𝜕𝜈

(︁
𝜑†1𝜎𝜆𝜑1

)︁
Получаем плотность тока вероятности в виде

j(𝑥) =
−iℏ
2𝑚

(︁
𝜑†1(𝜕𝜑1)− (𝜕𝜑†1)𝜑1

)︁
− 𝑞

𝑚𝑐
A𝜑†1𝜑1⏟  ⏞  

−iℏ
2𝑚𝑐 (𝜑

†
1(∇𝜅𝜑1)−(∇𝜅𝜑

†
1)𝜑1)

+
ℏ
2𝑚

rot
(︁
𝜑†1𝜎𝜑1

)︁
⏟  ⏞  

jrot

. (7.31)

Подставив ток (7.31) и плотность вероятности (7.30) в уравнение непрерывности, мы убеждаемся, что
действительно, в качестве плотности вероятности следует взять выражение, соответствующее обычному
уравнению Шрёдингера

𝜌(𝑥) = 𝜑†1𝜑1, (7.32)

откинув в формуле (7.32) последний член12.
Всё кроме последнего члена в формуле (7.31) получено из стандартной формулы для плотности потока

вероятности удлинением производных и суммированием по спиновой переменной. Последний член jrot —
ротор некоторого векторного поля, а значит его дивергенция автоматически равна нулю. С точки зрения
уравнения непрерывности для зарядов и токов его можно было бы отбросить. Но мы рассматриваем
заряженные частицы, а для них 𝑞 j — это уже средняя плотность электрического тока, и здесь этот член
важен. Рассмотрим вклад jrot в электрический ток:

𝑞 jrot =
𝑞ℏ
2𝑚⏟ ⏞ 
𝑐𝜇0

rot
(︁
𝜑†1𝜎𝜑1

)︁
= 𝑐 rot

(︁
𝜑†1𝜇𝜑1

)︁
⏟  ⏞  

M

Здесь M — средний магнитный дипольный момент на единицу объёма, т. е. в терминах электродинамики
сплошных сред, намагниченность среды13, а намагниченности среды даёт вклад в связанные токи14 как
раз 𝑐 rotM.

7.9 Спин-орбитальное взаимодействие
Теперь по сравнению с уравнением Паули мы пойдём на шаг дальше и воспользуемся вторым прибли-

жением для 𝜑2 (7.23).

𝜑
(2)
2 =

(𝜎, 𝑐𝒫̂)𝜑1
2𝑚𝑐2

+
𝑐𝒫0 +𝑚𝑐2

2𝑚𝑐2
(𝜎, 𝑐𝒫̂)𝜑1

2𝑚𝑐2
, (7.33)

12Для уравнения Дирака уравнение непрерывности выполняется, но когда мы разлагаем его решение в ряд, а потом
ряд обрываем (получаем уравнение Паули), то получившееся приближённое решение может не удовлетворять уравнению
непрерывности. В данном случае уравнение непрерывности удаётся модифицировать, чтобы оно снова выполнялось.

13В данном случае среда — это Дираковское поле.
14Подробнее про связанные заряды и токи в электродинамике сплошных сред см., например, главу 3.15 книги МТП.
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Второе слагаемое мало по сравнению с первым, так что мы получим уравнение Паули с малыми поправ-
ками. Для атомных спектров эти поправки дают вклад в тонкую структуру.

При подстановке (7.33) в уравнение (7.19) получаем

(−𝑐𝒫0 −𝑚𝑐2)𝜑1 =

(︃
(𝜎, 𝒫̂)2

2𝑚
+

(𝜎, 𝒫̂)(𝑐𝒫0 +𝑚𝑐2)(𝜎, 𝒫̂)

4𝑚2𝑐2

)︃
𝜑1. (7.34)

Чтобы преобразовать второе слагаемое

𝒫0(𝜎, 𝒫̂) = 𝒫0𝜎𝜇𝒫𝜇 = 𝜎𝜇𝒫𝜇𝒫0 + 𝜎𝜇 [𝒫0,𝒫𝜇]⏟  ⏞  
i 𝑞ℏ𝑐 𝐹0𝜇=−i 𝑞ℏ𝑐 𝐸𝜇

= (𝜎, 𝒫̂)𝒫0 − i
𝑞ℏ
𝑐
(𝜎,E).

Вторую дробь в правой части уравнения разобьём на два равных слагаемых, в одном вынесем (𝑐𝒫0+𝑚𝑐
2)

направо, а во втором — налево:

(𝜎, 𝒫̂)(𝑐𝒫0 +𝑚𝑐2)(𝜎, 𝒫̂)

4𝑚2𝑐2
=

1

4𝑚𝑐2

{︃
(𝜎, 𝒫̂)2

2𝑚
(𝑐𝒫0 +𝑚𝑐2)⏟  ⏞  

≈− (𝜎,𝒫̂)2

2𝑚

+(𝑐𝒫0 +𝑚𝑐2)⏟  ⏞  
≈− (𝜎,𝒫̂)2

2𝑚

(𝜎, 𝒫̂)2

2𝑚

}︃
− i

𝑞ℏ
8𝑚2𝑐2

[︁
(𝜎, 𝒫̂), (𝜎,E)

]︁

В силу малости вклада данного члена мы можем из уравнения Паули (7.25) положить здесь (𝑐𝒫0+𝑚𝑐
2) =

− (𝜎,𝒫̂)2

2𝑚 . Распишем коммутатор в последнем слагаемом, воспользовавшись тем, что 𝜎𝜆 коммутируют с 𝒫𝜇
и 𝐸𝜈 [︁

(𝜎, 𝒫̂), (𝜎,E)
]︁
=
[︁
𝜎𝜇𝒫𝜇, 𝜎𝜈𝐸𝜈

]︁
= 𝜎𝜇

[︁
𝒫𝜇, 𝜎𝜈𝐸𝜈

]︁
+ [𝜎𝜇, 𝜎𝜈𝐸𝜈 ]𝒫𝜇 =

= 𝜎𝜇𝜎𝜈

[︁
𝒫𝜇, 𝐸𝜈

]︁
+ [𝜎𝜇, 𝜎𝜈 ]𝐸𝜈𝒫𝜇 = (δ𝜇𝜈 + iε𝜇𝜈𝜆𝜎𝜆)

[︁
𝒫𝜇, 𝐸𝜈

]︁
+ 2iε𝜇𝜈𝜆𝐸𝜈𝒫𝜇 =

=
[︁
𝑃𝜇, 𝐸𝜇

]︁
⏟  ⏞  
−iℏ divE

+iε𝜇𝜈𝜆

(︁
𝒫𝜇𝐸𝜈 + 𝐸𝜈𝒫𝜇

)︁
⏟  ⏞  

2𝒫𝜇∘𝐸𝜈

𝜎𝜆 = −iℏ 4𝜋𝜚внеш. + i2(𝒫̂ ∘E ∘ 𝜎).

Здесь 𝜚внеш. — плотность внешних электрических зарядов (которые создают внешние потенциалы, вхо-
дящие в удлинённые импульсы), кружок ∘ означает симметризованное произведение. Смешанное произ-
ведение с кружками вместо запятых построено с помощью симметризованных произведений. Обратите
внимание, в последний член вошёл удлинённый импульс 𝒫̂ , который соответствует кинематическому им-
пульсу 𝑚v√

1−𝑣2/𝑐2
.

Уравнение принимает вид

−𝑐𝒫0𝜑1 =

(︃
𝑚𝑐2 +

(𝜎, 𝒫̂)2

2𝑚
− (𝜎, 𝒫̂)4

8𝑚3𝑐2⏟  ⏞  √
𝑚2𝑐4+(𝜎,𝑐𝒫̂)2+𝑚𝑐2·𝑜

(︁
𝒫4

𝑚4𝑐4

)︁
+𝑞

−𝜋ℏ2𝜚внеш.

2𝑚2𝑐2
+
𝜇0(𝒫̂ ∘E ∘ 𝜎)

2𝑚𝑐

)︃
𝜑1. (7.35)

Как и раньше можно избавиться от слагаемого 𝑚𝑐2 сделав замену (7.28) 𝜑1 = e−i𝑚𝑐2𝑡
ℏ 𝜓п.

Плотность внешних зарядов даёт эффективную добавку к скалярному потенциалу 𝜙эфф. =
−𝜋ℏ2𝜚внеш.

2𝑚2𝑐2 .
Если в интересующей нас области нет внешних зарядов, то соответствующий член исчезает.

Мы уже установили, при выводе уравнения Паули, что

(𝜎, 𝒫̂)2

2𝑚
=

(P̂− 𝑞
𝑐A)2

2𝑚
− 𝜇0(𝜎,B).

С помощью этой формулы мы можем расписать уравнение (7.35).
Последний член уравнения (7.35) имеет вид энергии магнитного диполя в некотором добавочном маг-

нитном поле:

𝜇0(𝒫̂ ∘E ∘ 𝜎)
2𝑚𝑐

= −
(︁
𝜇̂, B̂эфф.

)︁
, 𝜇̂ = 𝜇0𝜎, B̂эфф. =

1
2𝑐

[︁
E×∘

𝒫̂
𝑚

]︁
, [a×∘ b]𝜆 = ε𝜇𝜈𝜆

𝑎̂𝜇𝑏̂𝜈+𝑏̂𝜈 𝑎̂𝜇
2⏟  ⏞  

𝑎̂𝜇∘𝑏̂𝜈

.

Если имеется центральное электрическое поле, т. е. поле, создаваемое потенциалом 𝜙(𝑟) = 𝜙(|r|), то

E = −𝜙′(𝑟)
r

𝑟
, B̂эфф. = −𝜙′(𝑟)

2𝑚𝑐𝑟
[r× 𝒫̂ ]⏟  ⏞  
ℏ^⃗𝑙кин.

= −𝜙
′(𝑟)ℏ
2𝑚𝑐𝑟

ˆ⃗
𝑙кин.,
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−𝑞м

+𝑞м

a

v

v

Рис. 7.1: Движущийся магнитный диполь представленный как пара магнитных зарядов

тогда последний член уравнения (7.35) приобретает вид спин-орбитального взаимодействия

𝜇0(𝒫̂ ∘E ∘ 𝜎)
2𝑚𝑐

=
𝜙′(𝑟)ℏ
2𝑚𝑐𝑟

(𝜇̂,
ˆ⃗
𝑙кин.).

(!*) Интересно, что в спин-орбитальное взаимодействие входим момент кинематического импульса. В

присутствии векторного потенциала он отличается от обычного (обобщённого!) орбитального момента ˆ⃗
𝑙,

в частности его проекции могут принимать значения не кратные 1
2 .

В сферически-симметричном электростатическом случае уравнение (7.35) приобретает вид

iℏ𝜕𝑡𝜓п =

(︃
𝑞 𝜙(𝑟) +

p̂2

2𝑚
− p̂4

8𝑚3𝑐2⏟  ⏞  
√
𝑚2𝑐4+𝑐2p̂2−𝑚𝑐2+𝑚𝑐2·𝑜

(︂
𝑝4

𝑚4𝑐4

)︂
+
𝜙′(𝑟)ℏ
2𝑚𝑐𝑟

(︁
𝜇̂,

ˆ⃗
𝑙
)︁
+ 𝑞

ℏ2(𝜙′′ + 2𝜙′/𝑟)

8𝑚2𝑐2⏟  ⏞  
𝜙эфф.(𝑟)

)︃
𝜓п. (7.36)

В кулоновском поле 𝜙К(𝑟) = 𝑄
𝑟 и последнее слагаемое даёт дарвиновскую поправку (дарвиновский член):

𝜙К
эфф.(r) =

−𝜋ℏ2𝑄 δ3(r)

2𝑚2𝑐2
.

В атомных спектрах релятивистская поправка − p̂4

8𝑚3𝑐2 и спин-орбитальное взаимодействие
𝜙′(𝑟)ℏ
2𝑚𝑐𝑟

(︁
𝜇̂,

ˆ⃗
𝑙
)︁

и дарвиновский член 𝑞−𝜋ℏ2𝑄 δ3(r)
2𝑚2𝑐2 дают вклад в тонкую структуру.

7.9.1 Классический вывод спин-орбитального взаимодействия
Движущийся магнитный диполь приобретает электрический дипольный момент. Чтобы увидеть это

проще всего представить магнитный диполь 𝜇 по аналогии с электрическим, как пару магнитных зарядов
(монополей) ±𝑞м, разделённых вектором a

𝜇 = 𝑞мa.

Пусть такая «гантелька» движется со скоростью v (см. рис. 7.1).
Подобно тому, как движущиеся электрические заряды 𝑞э могут создавать магнитный дипольный мо-

мент, движущиеся магнитные заряды 𝑞м могут создавать электрический дипольный момент15:

𝜇 =
1

2𝑐

∑︁
𝑘

𝑞э𝑘 [r𝑘 × v𝑘] аналогично d = − 1

2𝑐

∑︁
𝑘

𝑞м𝑘 [r𝑘 × v𝑘]. (7.37)

В рассматриваемом случае электрический дипольный момент не зависит от положения начала координат
и равняется

d = −𝑞
м

2𝑐
[a× v] = − 1

2𝑐
[𝜇× v].

Потенциальная энергия электрического дипольного момента во внешнем электрическом поле может быть
переписана как потенциальная энергия магнитного дипольного момента в некотором эффективном маг-
нитном поле:

𝑈𝐸 = −(d,E) =
1

2𝑐
(E, [𝜇× v]) = −

(︁
𝜇, 1

2𝑐 [E× v]
)︁
= −(𝜇,Bэфф.).

Эффективное магнитное поле Bэфф. =
1
2𝑐 [E× v] составляет ровно половину магнитного поля, возникаю-

щего при переходе в движущуюся с малой скоростью v (𝑣 ≪ 𝑐) систему отсчёта16.
15Переход между электрическими зарядами и магнитными описывается с помощью зарядового вращения, при котором

все электрические величины (поля, моменты) переходят в магнитные, а все магнитные — в электрические со знаком минус.
Отсюда происходит различие в знаках в формулах (7.37). Подробнее про зарядовое вращение можно прочитать в книге
МТП § 4.7.3.

16Преобразование Лоренца для электромагнитного поля и их предельный вид при малых скоростях см., например, в книге
МТП § 1.13.4.
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(*) Половину магнитного поля в системе отсчёта магнитного диполя компенсирует прецессия Томаса17

возникающая при ускоренном движении диполя.
В кулоновском поле

E =
𝑞

𝑟3
r,

𝑈𝐸 = −
(︁
𝜇, 1

2𝑐

[︀
E× 𝒫

𝑚

]︀ )︁
= − 𝑞

2𝑚𝑐𝑟3

(︁
𝜇, [r×𝒫 ]⏟  ⏞  

Lкин.

)︁
= − 𝑞

2𝑚𝑐𝑟3
(𝜇,Lкин.).

Соответствующая добавка к квантовому гамильтониану:

𝐻̂сп.орб. = − 𝑞ℏ
2𝑚𝑐𝑟3

(︁
𝜇,

ˆ⃗
𝑙кин.

)︁
.

Эффективное магнитное поле:

B̂эфф. =
𝑞ℏˆ⃗𝑙кин.

2𝑚𝑐𝑟3
.

17Про прецессию Томаса в классической (не квантовой) теории см. МТП § 2.8.8 задачи 24, 25 и § 2.8.9.
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Глава 8

Тождественные частицы

8.1 Перестановочная симметрия
Рассмотрим оператор перестановки двух частиц1. Такой оператор переставляет у волновой функции

все аргументы, относящиеся к 1-й частице 𝜉1 и все аргументы, относящиеся ко второй частице 𝜉2:

𝑃12 𝜓(𝜉1, 𝜉2) = 𝜓(𝜉2, 𝜉1).

Аналогично мы можем ввести оператор 𝑃𝑛1𝑛2
переставляющий частицы с номерами 𝑛1 и 𝑛2.

Очевидно, что оператор 𝑃12 сохраняет скалярный квадрат ⟨𝑃12𝜓|𝑃12𝜓⟩ = ⟨𝜓|𝜓⟩ и является обратимым
𝑃 2
12 = 1̂, т. е. 𝑃12 = 𝑃−1

12 = 𝑃 †
12. Оператор является унитарным и эрмитовым, его собственные числа — ±1.

Если две частицы имеют одинаковые свойства, то их перестановка является симметрией системы, т. е.
[𝑃12, 𝐻̂] = 0, а оператор 𝑃12 соответствует сохраняющейся величине2, которая называется чётностью по
отношению к перестановке частиц.

Частицы одного сорта в квантовой механике в принципе неразличимы. Это означает, что перестанов-
ка двух частиц одного сорта не должна менять состояние системы, т. е. при перестановке тождественных
частиц волновая функция должна оставаться прежней с точностью до фазового множителя. Таким об-
разом, по отношению к перестановке тождественных частиц волновая функция может быть либо чётной,
либо нечётной, но она не может быть линейной комбинацией чётной и нечётной частей, т. е. какая-то чёт-
ность должна быть обязательно. В силу неразличимости тождественных частиц чётность по отношению
к перестановке для каждого сорта частиц должна быть фиксированной.

В квантовой теории поля доказывается Теорема о связи спина со статистикой3, согласно которой
чётность по отношению к перестановке тождественных частиц задаётся их спином:

• тождественные частицы с целым спином (бозоны) всегда чётны по отношению к перестановке;

• тождественные частицы с полуцелым спином (фермионы) всегда нечётны по отношению к пе-
рестановке.

В нашем курсе теорема о связи спина со статистикой вводится без доказательства, как хорошо уста-
новленный на эксперименте закон природы.

8.2 Невзаимодействующие тождественные частицы
Без учёта тождественности, если система состоит из невзаимодействующих подсистем, то собственные

состояния системы в целом можно представить в виде тензорного произведения4 собственных состояний
1Частицы должны описываться одинаковым набором переменных, в частности они должны иметь одинаковый спин.
2Если свойства частиц совпадают лишь приближённо, то мы имеем приближённую симметрию и приближённый закон

сохранения. В этом случае обычно гамильтониан представляют в виде 𝐻̂ = 𝐻̂0+𝑉 , где [𝑃12, 𝐻̂0] = 0, а 𝑉 — малая поправка.
Например, в задачах ядерной физики перестановка нейтрона и электрона является приближённой симметрией.

3Пока речь идёт не о статистике, а о перестановочной симметрии. Статистики Бозе и Ферми появятся позже, при рас-
смотрении задач статистической физики.

4Напоминаем, что такое тензорное произведение.

Если 𝜓 = 𝜓1 ⊗ 𝜓2, то можно подобрать такие аргументы волновой функции, что 𝜓(𝜉1, 𝜉2) = 𝜓1(𝜉1)𝜓2(𝜉2).

Когда тензорное произведение операторов действует на волновую функцию, то каждый множитель действует на свой аргу-
мент:

𝐴⊗ 𝐵̂ 𝜓1(𝜉1)𝜓2(𝜉2) = (𝐴𝜓1(𝜉1))(𝐵̂𝜓2(𝜉2)).
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подсистем

𝐻̂ = 𝐻̂1 ⊗ 1̂ + 1̂⊗ 𝐻̂2,
(︁
𝐻̂1 ⊗ 1̂ + 1̂⊗ 𝐻̂2

)︁
𝜓1 ⊗ 𝜓2 = (𝐻̂1𝜓1)⏟  ⏞  

𝐸1𝜓1

⊗𝜓2 + 𝜓1 ⊗ (𝐻̂2𝜓2)⏟  ⏞  
𝐸2𝜓2

= (𝐸1 + 𝐸2)⏟  ⏞  
𝐸

𝜓1 ⊗ 𝜓2.

В состоянии 𝜓 = 𝜓1 ⊗ 𝜓2 определённые независимые состояния есть у обеих подсистем: у первой — 𝜓1,
у второй — 𝜓2. В этом случае подсистемы не скоррелированы: что бы мы ни делали и что бы мы ни
узнавали про одну подсистему на другую никак не влияет5.

Если подсистемы одинаковы, то, вместе с состоянием 𝜓(𝜉1, 𝜉2), стационарным состоянием с той же
энергией также является состояние 𝑃12𝜓(𝜉1, 𝜉2) = 𝜓(𝜉2, 𝜉1). Также стационарными являются любые ли-
нейные комбинации этих двух состояний, в том числе

𝜓+(𝜉1, 𝜉2) = 𝜓(𝜉1, 𝜉2) + 𝜓(𝜉2, 𝜉1) = (1̂ + 𝑃12)𝜓(𝜉1, 𝜉2), 𝜓−(𝜉1, 𝜉2) = 𝜓(𝜉1, 𝜉2)− 𝜓(𝜉2, 𝜉1) = (1̂− 𝑃12)𝜓(𝜉1, 𝜉2).

Если подсистемы — тождественные частицы, то стационарные состояния должны обладать определён-
ной чётностью по отношению к их перестановке. Для фермионов возможно антисимметричное состояние
𝜓− и невозможно симметричное состояние 𝜓+, а для бозонов — наоборот.

Если исходное состояние имело вид тензорного произведения 𝜓 = 𝜓1 ⊗ 𝜓2, то антисимметризованное
состояние 𝜓− уже не будет тензорным произведением (кроме случая 𝜓1 = 𝜓2 ⇒ 𝜓− = 0). Таким образом,
даже невзаимодействующие фермионы не могут быть описаны как независимые подсистемы. Это понят-
но как следствие принципа запрета Паули: состояние второго фермиона не может быть независимо от
состояния первого, т. к. состояние занятое первым фермионом для второго недоступно.

Для бозонов ситуация похожая. Если исходное состояние имело вид тензорного произведения 𝜓 =
𝜓1 ⊗ 𝜓2, то симметризованное состояние 𝜓+ уже не будет тензорным произведением, кроме случая 𝜓1 =
𝜓2 ⇒ 𝜓+ = 2𝜓1 ⊗ 𝜓1. Вроде бы в случае 𝜓1 = 𝜓2 состояния бозонов кажутся независимыми, но какое
бы измерение мы не провели над одним из бозонов волновая функция останется симметричной, а значит
изменится состояние обоих бозонов.

(!) Тождественные частицы одного сорта могут быть невзаимодействующими, но не могут быть неза-
висимыми.

При рассмотрении ансамбля тождественных частиц в качестве невозмущённого гамильтониана часто
бывает удобно взять гамильтониан без учёта взаимодействия.

𝐻̂ =

𝑛∑︁
𝑎=1

𝐻̂𝑎⏟  ⏞  
𝐻̂0

+ 𝑉 (𝜉1, . . . , 𝜉𝑛)⏟  ⏞  
симметрично по перестановкам

, 𝐻̂𝑎 = 1̂⊗ 1̂⊗ . . . 1̂⊗ 𝐻̂1ч. ⊗ · · · ⊗ 1̂⏟  ⏞  
𝑛 множителей, 𝐻̂1ч. в позиции № 𝑎

.

При этом нахождение невозмущённых стационарных состояний для гамильтониана 𝐻̂0 сводится к нахож-
дению стационарных состояний для гамильтониана 𝐻̂1ч.

𝐻̂1ч.𝜓𝑘 = 𝐸𝑘𝜓𝑘.

Потом из одночастичных состояний строим с помощью тензорного произведения 𝑛-частичные

𝐸
(0)
𝑘1𝑘2...𝑘𝑛

=

𝑛∑︁
𝑎=1

𝐸𝑘𝑎 , 𝜓
(0)
𝑘1𝑘2...𝑘𝑛

= 𝜓𝑘1 ⊗ 𝜓𝑘2 ⊗ · · · ⊗ 𝜓𝑘𝑛 .

И наконец тензорные произведения симметризуем (для бозонов)

𝜓
(0)
(𝑘1𝑘2...𝑘𝑛)

= 𝐶
∑︁

Σ(𝑘1𝑘2...𝑘𝑛)

𝜓
(0)
Σ(𝑘1𝑘2...𝑘𝑛)

(8.1)

или антисимметризуем (для фермионов)

𝜓
(0)
[𝑘1𝑘2...𝑘𝑛]

=
1√
𝑛!

∑︁
Σ(𝑘1𝑘2...𝑘𝑛)

(−1)Σ(𝑘1𝑘2...𝑘𝑛)𝜓
(0)
Σ(𝑘1𝑘2...𝑘𝑛)

(8.2)

Здесь Σ(𝑘1𝑘2 . . . 𝑘𝑛) — некоторая перестановка индексов 𝑘1, 𝑘2, . . . , 𝑘𝑛, (−1)Σ(𝑘1𝑘2...𝑘𝑛) — это +1 для чётных
перестановок и −1 для нечётных, суммы берутся по всем возможным перестановкам Σ(𝑘1𝑘2 . . . 𝑘𝑛).

5В классической теории вероятности аналогичная ситуация имеет место для распределений вероятностей вида 𝜌(𝜉1, 𝜉2) =
𝜌1(𝜉1) 𝜌2(𝜉2). Величины 𝜉1 и 𝜉2 независимы, что бы мы ни узнали про 𝜉1 про 𝜉2 мы ничего не узнаем. Помимо совместного
распределения вероятностей 𝜌(𝜉1, 𝜉2) существуют независимые распределения вероятностей по 𝜉1 и по 𝜉2.
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Индексы в круглых скобках означают симметризацию, в квадратных — антисимметризацию.
Нормировочный множитель явно выписан только для антисмметризации, поскольку для симметри-

зации он зависит от числа повторяющихся индексов (при антисимметризации повторяющиеся индексы
обнуляют выражение).

Формулу (8.2) удобно записать через определитель Слэтера

𝜓
(0)
[𝑘1𝑘2...𝑘𝑛]

(𝜉1, 𝜉2, . . . , 𝜉𝑛) =
1√
𝑛!

det

⎛⎜⎜⎜⎝
𝜓1(𝜉1) 𝜓2(𝜉1) . . . 𝜓𝑛(𝜉1)
𝜓1(𝜉2) 𝜓2(𝜉2) . . . 𝜓𝑛(𝜉2)

...
...

. . .
...

𝜓1(𝜉𝑛) 𝜓2(𝜉𝑛) . . . 𝜓𝑛(𝜉𝑛)

⎞⎟⎟⎟⎠ . (8.3)

Далее уже (анти)симметризованные волновые функции невозмущённого гамильтониана используются
как нулевое приближение в теории возмущений.

(!) Можно сначала (анти)симметризовать волновые функции, а потом посчитать поправки (как мы
описано выше), или можно сперва посчитать поправки, а потом (анти)симметризовать волновые функции.
Результат получается разный! (В первом случае точнее.) Различие в первых поправках к энергии в этом
случае называют обменным взаимодействием, хотя никакого взаимодействия кроме оператора 𝑉 в обоих
случаях нет.

8.3 Разделение координатных и спиновых переменных

Если имеется система тождественных частиц, причём координатные и спиновые переменные не взаимо-
действуют, то стационарные состояния могут быть найдены в виде произведения координатной волновой
функции 𝜑 и спиновой6 𝜒:

𝜓(r1,𝑚
𝑠
1⏟  ⏞  

𝜉1

; r2,𝑚
𝑠
2⏟  ⏞  

𝜉2

; . . . ; r𝑛,𝑚
𝑠
𝑛⏟  ⏞  

𝜉𝑛

) = 𝜑(r1, r2, . . . , r𝑛)𝜒(𝑚
𝑠
1,𝑚

𝑠
2, . . . ,𝑚

𝑠
𝑛).

Оператор перестановки частиц 𝑃𝑛1𝑛2 при этом представляется как произведение двух коммутативных
множителей: оператора перестановки координатных переменных 𝑃 𝑟𝑛1𝑛2

и оператора перестановки спино-
вых переменных 𝑃 𝑠𝑛1𝑛2

. При этом обе функции 𝜑 и 𝜒 должны обладать определённой перестановочной
чётностью, а общая чётность должно быть +1 для бозонов, или −1 для фермионов.

Если при этом спиновый момент сохраняется, то можно выбрать спиновые волновые функции как
функции с определённым значением суммарного спина 𝑆 и его проекции на ось 𝑧 — 𝑀𝑆 . Полученные
таким разделением переменных состояния часто возникают как правильные волновые функции нулевого
порядка стационарной теории возмущений.

Рассмотрим это разделение переменных подробнее в простейшем случае двух тождественных частиц.
Пусть имеются две частицы со спином 𝑠. Тогда число независимых спиновых состояний для двух

частиц составляет (2𝑠+ 1)2. Состояние с максимальной проекцией спина всегда симметрично:

|2𝑠, 2𝑠⟩⏟  ⏞  
2-частичное спиновое состояние

= |𝑠, 𝑠)⊗ |𝑠, 𝑠)⏟  ⏞  
тензорное произведение 1-частичных состояний

.

Понижающий оператор 𝑆− = 𝑠1−+𝑠2− = 𝑠−⊗1̂+1̂⊗𝑠− сохраняет чётность (переводит чётные состояния в
чётные, а нечётные — в нечётные), поэтому все состояния с определённым значением 𝑆 имеют одинаковую
чётность. Состояние |𝑆, 𝑆⟩ (𝑆 < 2𝑠) мы каждый раз получаем из ортогональности к другим состояниям с
бо́льшим суммарным спином той же проекцией спина, при этом чётности чередуются7. Так что переста-
новочная чётность спиновой волновой функции для суммарного спина 𝑆 равна (−1)2𝑠−𝑆 . Общая чётность
волновой функции 𝜓 должна равняться (−1)2𝑠 Таким образом, чётность координатной волновой функции
двух тождественных частиц 𝜑 определяется чётностью суммарного спина:

𝜑(r2, r1) = (−1)𝑆 𝜑(r1, r2).

6Спиновые аргументы волновой функции в литературе обозначают по-разному. Мы используем стандартное обозначение
для проекции углового момента 𝑚, обязательно приписывая (чтобы избежать путаницы) к 𝑚 различные индексы. Так 𝑚𝑠1 и
𝑚𝑠1 — проекция спина 1-й частицы, но 𝑚𝑠1 будет использоваться для нумерации базисных состояний, а 𝑚𝑠1 — как аргумент
волновой функции. Аналогично 𝑚𝑙1 — проекция орбитальной момента 1-й частицы. Аналогично для суммарного спина 𝑆
проекция будет обозначаться 𝑀𝑆 , для суммарного орбитального момента 𝐿 — как 𝑀𝐿, для полного момента импульса 𝐽 —
как 𝑀𝐽 . Во всех случаях мы будем использовать обезразмеренные моменты импульса.

7Мы уже обсуждали тему сложения угловых моментов. См. КПКМ-15.5.
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8.4 Обменный член
Рассмотрим влияние симметризации/антисимметризации координатной волновой функции на энерге-

тические уровни системы тождественных частиц (обменное член) на примере двух частиц.
(!) Влитературе обменный член называют также обменным взаимодействием. Но никакого отдельного

от прочих взаимодействий обменного взаимодействия не существует! Обычно имеется в виду обменный
член кулоновского взаимодействия.

Пусть две тождественных частицы находятся в одной потенциальной яме 𝑈(r), а энергия их взаимо-
действия 𝑉 зависит от расстояния между частицами |r1 − r2|.

Гамильтониан имеет вид

𝐻̂ =

𝐻̂0⏞  ⏟  
p̂2
1

2𝑚
+ 𝑈(r1)⏟  ⏞  

𝐻̂1=𝐻̂1ч.⊗1̂

+
p̂2
2

2𝑚
+ 𝑈(r2)⏟  ⏞  

𝐻̂2=1̂⊗𝐻̂1ч.

+𝑉 (|r1 − r2|).

Здесь мы выделили гамильтонианы первой и второй частиц в потенциальной яме 𝐻̂1 и 𝐻̂2. Их сумму 𝐻̂0

мы берём в качестве невозмущённого гамильтониана, а взаимодействие 𝑉 в качестве возмущения8.
Уровни энергии невозмущённой системы находятся через уровни энергии одиночной частицы в яме

𝑈(r):
𝐻̂1ч.𝜓1,2 = 𝐸1,2𝜓1,2, 𝐸(0) = 𝐸1 + 𝐸2.

В гамильтониане отсутствуют спиновые операторы, так что координатные и спиновые переменные раз-
деляются (см. § 8.3 «Разделение координатных и спиновых переменных»). Координатная часть волновой
функции симметризуется или антисимметризуется в зависимости от чётности суммарного спина:

𝜓(r1,𝑚
𝑠
1; r2,𝑚

𝑠
2
) =

𝜓1(r1)𝜓2(r2) + (−1)𝑆𝜓2(r1)𝜓1(r2)√
2

𝜒𝑆,𝑀𝑆
(𝑚𝑠

1,𝑚
𝑠
2) (8.4)

Найдём первую поправку к энергии в стационарной теории возмущений, используя невозмущённые
волновые функции (8.4):

𝐸(1) = ⟨𝜓|𝑉 |𝜓⟩ = (8.5)

=

ˆ
𝜓*
1(r1)𝜓

*
2(r2) + (−1)𝑆𝜓*

2(r1)𝜓
*
1(r2)√

2
𝑉 (|r1 − r2|)

𝜓1(r1)𝜓2(r2) + (−1)𝑆𝜓2(r1)𝜓1(r2)√
2

𝑑3r1 𝑑
3r2 =

=

ˆ
|𝜓1(r1)|2⏟  ⏞  
𝜌1(r1)

𝑉 (|r1 − r2|) |𝜓1(r2)|2⏟  ⏞  
𝜌2(r2)

𝑑3r1 𝑑
3r2 +

+ (−1)𝑆
ˆ
𝜓*
1(r1)𝜓2(r1)⏟  ⏞  
𝜌обм.(r1)

𝑉 (|r1 − r2|) 𝜓*
2(r2)𝜓1(r2)⏟  ⏞  
𝜌*обм.(r2)

𝑑3r1𝑑
3r2

Поправка к энергии распалась на два слагаемых. Первое слагаемое

𝐾 =

ˆ
𝜌1(r1)𝑉 (|r1 − r2|) 𝜌2(r2) (8.6)

соответствует энергии взаимодействия первой частицы, распределённой с плотностью 𝜌1(r1) и второй
частицы, распределённой с плотностью 𝜌2(r2). Если бы мы взяли в качестве невозмущённой волновой
функции 𝜓1(r1)𝜓2(r2), то поправка к энергии была бы в точности равна этому слагаемому (8.6).

Второе слагаемое называется обменным членом (или обменным интегралом)

𝐽 =

ˆ
𝜓*
1(r1)𝜓2(r1)⏟  ⏞  
𝜌обм.(r1)

𝑉 (|r1 − r2|) 𝜓*
2(r2)𝜓1(r2)⏟  ⏞  
𝜌*обм.(r2)

𝑑3r1𝑑
3r2 = (8.7)

=

ˆ
Re (𝜌обм.(r1))𝑉 (|r1 − r2|) Re (𝜌обм.(r2)) 𝑑

3r1𝑑
3r2

+

ˆ
Im (𝜌обм.(r1))𝑉 (|r1 − r2|) Im (𝜌обм.(r2)) 𝑑

3r1𝑑
3r2.

8Такое разбиение гамильтониана на невозмущённую часть и возмущение очевидно, но неоптимально. В § 9.2 «Вари-
ационный метод для сложного атома» мы найдём лучшее разбиение, когда невозмущённый гамильтониан будет взят в
приближении среднего поля, частично учитывающем взаимодействие электронов в атоме.
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Оно выглядит как удвоенная энергия взаимодействия частиц с некоторой (в общем случае комплексной)
одинаковой плотностью 𝜌обм.(r) (если 𝜓1 и 𝜓2 вещественны, то 𝜌обм. =

√
𝜌1𝜌2). Обменный интеграл, вообще

говоря, не является малым по сравнению с (8.6).
Обменный член интересует нас в первую очередь для случая сложного (многоэлектронного) атома.
(ф) Так нашему двухчастичному случаю соответствует атом гелия, если взять 𝑈(r) = − 2𝑒2

𝑟 — энергия
взаимодействия электрона с ядром, а 𝑉 (|r1 − r2|) = 𝑒2

|r1−r2| — энергия взаимодействия двух электронов.
В этом случае суммарный спин электронов 𝑆 = 0 (одна поляризация) или 𝑆 = 1 (три поляризации). Об-
менный интеграл 𝐽 положителен. Так что при 𝑆 = 0 получается положительная добавка к энергии (как
бы некоторое дополнительное отталкивание электронов), а при 𝑆 = 1 — отрицательная добавка к энер-
гии (как был некоторое дополнительное притяжение электронов). Разумеется, никакого взаимодействия
электронов кроме электростатического мы здесь не учитываем. Просто при 𝑆 = 0 координатная волновая
функция симметрична, и 𝜑 отлична от нуля при r1 = r2, а при 𝑆 = 1 координатная волновая функция
антисимметрична, и 𝜑 обращается в нуль при r1 = r2. Таким образом при 𝑆 = 0 электроны друг к другу
оказываются в среднем ближе, чем при 𝑆 = 1.

(ф*) Обменный член связан со спином и с тождественностью частиц только опосредованно. Он связано
с симметрией гамильтониана по отношению к перестановке частиц. Пусть, например, мы рассматриваем
задачу связанную с сильным ядерным взаимодействием. Это взаимодействие практически не различает
протоны и нейтроны (нуклоны). Массы протона и нейтрона тоже очень близки. Тогда мы можем в ну-
левом приближении пренебречь различием масс нуклонов. Тогда, если в потенциальной яме находятся
протон и нейтрон, то у нас есть приближённая симметрия гамильтониана по отношению к их перестановке
(их различие мы учтём в следующих порядках теории возмущений). Поскольку протон и нейтрон разли-
чимы, волновая функция системы протон + нейтрон может быть как чётной, так и нечётной, чётность
координатной волновой функцией уже никак не связана с суммарным спином. Тем не менее, мы, прежде
чем считать поправку к энергии, можем перейти к невозмущённым волновым функциям с определённой
чётностью и взаимодействие протона с нейтроном даст расщепление по энергии между состояниями с
различной чётностью координатной волновой функции, которое соответствует обменному члену.

8.5 Пространства Фока*

(!) В квантовой механике возможны суперпозиции состояний, содержащих различное число частиц!
Это экспериментальный факт.

Используемые до сих пор волновые функции с конечным числом аргументов подразумевают, что систе-
ма имеет фиксированное конечное число степеней свободы. Система с переменным числом частиц имеет
переменное (потенциально бесконечное) число степеней свободы. Для описания таких систем и вводятся
пространства Фока.

Пусть у нас имеется некоторая частица, описывающаяся полным набором наблюдаемых 𝜉9 Для од-
ной такой частицы пространство состояний — гильбертово пространство — пространство квадратично-
интегрируемых функций от аргумента 𝜉, обозначим его ℋ1. Возьмём в этом пространстве какой-нибудь
ортонормированный дискретный базис:

{|𝑘⟩}𝑘∈N, ⟨𝑘1|𝑘2⟩ = δ𝑘1𝑘2 ,
∑︁
𝑘

|𝑘⟩⟨𝑘| = 1̂ℋ1
. (8.8)

Сначала введём пространство Фока для различимых частиц:

𝐹 (ℋ1) =

∞⨁︁
𝑛=0

ℋ⊗𝑛
1 = ℋ⊗0

1⏟ ⏞ 
ℋ0=C1

⊕ℋ1 ⊕ℋ1 ⊗ℋ1⏟  ⏞  
ℋ2

⊕ℋ1 ⊗ℋ1 ⊗ℋ1⏟  ⏞  
ℋ3

⊕ · · · ⊕
𝑛 раз⏞  ⏟  

ℋ1 ⊗ · · · ⊗ ℋ1 ⊗ℋ1⏟  ⏞  
ℋ𝑛

⊕ . . .

Базис в пространстве 𝐹 (ℋ1) — объединение базисов для подпространств с разным числом частиц: 0-
частичного базиса, 1-частичного базиса, 2-частичного базиса, . . . , 𝑛-частичного базиса, . . .

{1}⏟ ⏞ 
0-частичный 1-мерный базис

∪ {|𝑘⟩}𝑘∈N⏟  ⏞  
1-частичный базис

∪{|𝑘1⟩ ⊗ |𝑘2⟩}𝑘1,𝑘2∈N⏟  ⏞  
2-частичный базис

∪ · · ·∪{|𝑘1⟩ ⊗ |𝑘2⟩ ⊗ · · · ⊗ |𝑘𝑛⟩}𝑘1,𝑘2,...,𝑘𝑛∈N⏟  ⏞  
𝑛-частичный базис

∪ . . .

В каждом из состояний этого базиса определено число частиц, а для каждой частицы с номером 𝑖 опре-
делено какое одночастичное состояние 𝜓𝑖(𝜉𝑖) ∈ ℋ1 она занимает. Состояния отличающиеся перестановкой
частиц в этом базисе (и в пространстве 𝐹 (ℋ1)) могут различаться.

9Обычно это радиус-вектор и проекция спина: 𝜉 = (r,𝑚𝑠).
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Волновая функция в пространстве Фока может быть записана как линейная комбинация функций с
разным числом аргументом:

Ψ = 𝜓0⏟ ⏞ 
функция от 0 переменных (число)

+𝜓1(𝜉1) + 𝜓2(𝜉1, 𝜉2) + 𝜓3(𝜉1, 𝜉2, 𝜉3) + · · ·+ 𝜓𝑛(𝜉1, 𝜉2, . . . , 𝜉𝑛) + . . . . (8.9)

Скалярное произведение записывается исходя из того, что состояния с разным числом частиц являются
взаимоисключающими (ортогональны друг другу)

⟨Ψ|Φ⟩ =
∞∑︁
𝑛=0

⟨𝜓𝑛|𝜑𝑛⟩

Здесь 1-мерное скалярное произведение — это

⟨𝜓0|𝜑0⟩ = 𝜓*
0𝜑0,

а остальные скалярные произведения определяются обычным образом через суммы и/или интегралы:

⟨𝜓𝑛|𝜑𝑛⟩ =
ˆ
𝜓*
𝑛(𝜉1, 𝜉2, . . . , 𝜉𝑛)𝜑𝑛(𝜉1, 𝜉2, . . . , 𝜉𝑛) 𝑑𝜉1 𝑑𝜉2 . . . 𝑑𝜉𝑛.

Если 𝜉𝑘 = (r𝑘,𝑚
𝑠
𝑘), то интеграл по 𝜉𝑘 — это интеграл по r𝑘 и сумма по 𝑚𝑠

𝑘.
(?) Как понимать волновую функцию Ψ (8.9) как функцию? Если это действительно функция, то

каковы её аргументы и как по аргументам определяется значение? Значения обычной волновой функции
— амплитуды вероятностей, соответствующие состояниям, заданным аргументами волновой функции.
В волновую функции с неопределённым числом частиц можно подставлять разное число аргументов.
𝑛 аргументов 𝜉1, . . . , 𝜉𝑛 задают 𝑛-частичное состояние и, если их подставить в соответствующее слагае-
мое, то 𝜓𝑛(𝜉1, . . . , 𝜉𝑛) даёт амплитуду вероятностей этого состояния. Так что при вычислении функции
Ψ от заданного числа аргументов в сумму (8.9) каждый раз даёт вклад ровно одно слагаемое. Так что
𝜓𝑛(𝜉1, . . . , 𝜉𝑛) — это 𝑛-частичная волновая функция, нормированная (если ⟨Ψ|Ψ⟩ = 1) на вероятность того,
что система содержит ровно 𝑛 частиц. Почему функцию переменного числа аргументов физики предста-
вили как сумму функций от разного числа аргументов? Эта сумма — сумма ортогональных векторов.
Для векторов состояния состояний с фиксированным числом частиц сумма векторов соответствует сумме
волновых функций, поэтому и для волновых функций с переменным числом аргументов принято то же
соотношение. Почему вообще можно складывать векторы состояния, отвечающие разному числу частиц?
А с этого мы начали параграф: «В квантовой механике возможны суперпозиции состояний, содержащих
различное число частиц!»

(!) Нуль-частичная волновая функция 𝜓0 в формуле (8.9) — это амплитуда вероятности единственного
состояния, в котором нет частиц и которой называют вакуумом10.

Для тождественных частиц пространство 𝐹 (ℋ1) следует сузить, оставив в нём только состояния с
правильной перестановочной симметрией: только чётные (для бозонов), или только нечётные (для фер-
мионов).

Обозначим 𝑆+ оператор симметризации волновой функции по перестановкам частиц, а 𝑆− — оператор
антисимметризации. Коэффициенты при симметризации/антисимметризации подберём так, чтобы эти
операторы были проекторами на соответствующие подпространства:

𝑆2
± = 𝑆± = 𝑆†

±.

Тогда из исходного пространства 𝐹 (ℋ1) мы получаем бозонное пространство Фока, состоящее только из
симметричных волновых функций

𝑆+𝐹 (ℋ1) =

∞⨁︁
𝑛=0

𝑆+ℋ⊗𝑛
1

и фермионное пространство Фока, состоящее только из антисимметричных волновых функций

𝑆−𝐹 (ℋ1) =

∞⨁︁
𝑛=0

𝑆−ℋ⊗𝑛
1 .

10В физике используются разные неравносильные определения вакуума. Это определение — одно из них. Другое опреде-
ление, которое нам встретится: вакуум — состояние поля с минимальной энергией.
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8.5.1 Базис в бозонном пространстве Фока
Бозонное пространство Фока, состоит только из симметричных волновых функций

𝑆+𝐹 (ℋ1) =

∞⨁︁
𝑛=0

𝑆+ℋ⊗𝑛
1 .

Базис для пространства Фока 𝑆±𝐹 (ℋ1) может быть получен из базиса пространства 𝐹 (ℋ1) действием
оператора 𝑆± (симметризацией/антисимметризацией) на базисные векторы (после чего надо выкинуть все
повторяющиеся и нулевые векторы, а некоторые многочастичные векторы придётся заново отнормировать
на 1).

Проиллюстрируем построение базиса в бозонном пространстве Фока на примерах.

1 → 1 — 0-частичный базисный вектор не меняется (переставлять нечего).
|𝑘⟩ → |𝑘⟩ — 1-частичный базисный вектор не меняется (переставлять нечего);

𝜓𝑘(𝜉1) → 𝜓𝑘(𝜉1) — то же, через волновые функции.
|𝑘⟩ ⊗ |𝑘⟩ → |𝑘⟩ ⊗ |𝑘⟩ — 2-ч. базисный вектор, когда частицы одном состоянии не меняется;

𝜓𝑘(𝜉1)𝜓𝑘(𝜉2) → 𝜓𝑘(𝜉1)𝜓𝑘(𝜉2) — то же, через волновые функции.

|𝑘1⟩ ⊗ |𝑘2⟩ → |𝑘1⟩ ⊗ |𝑘2⟩+ |𝑘2⟩ ⊗ |𝑘1⟩√
2

— 2-ч. базисный вектор, когда частицы разных состояниях;

𝜓𝑘1(𝜉1)𝜓𝑘2(𝜉2) → 𝜓𝑘1(𝜉1)𝜓𝑘2(𝜉2) + 𝜓𝑘2(𝜉1)𝜓𝑘1(𝜉2)√
2

— то же, через волновые функции.

|𝑘2⟩ ⊗ |𝑘1⟩ → |𝑘1⟩ ⊗ |𝑘2⟩+ |𝑘2⟩ ⊗ |𝑘1⟩√
2

— такой вектор уже был, выбрасываем!

𝜓𝑘2(𝜉1)𝜓𝑘1(𝜉2) → 𝜓𝑘2(𝜉1)𝜓𝑘1(𝜉2) + 𝜓𝑘1(𝜉1)𝜓𝑘2(𝜉2)√
2

— то же, через волновые функции.
. . . . . .

Мы видим, что при переходе к бозонному пространству Фока при перестановке частиц состояние
не меняется. Поэтому при нумерации базисных состояний не надо указывать какая частица в каком
одночастичном состоянии находится, достаточно указать числа заполнения: сколько частиц находится в
базисном одночастичном состоянии с данным номером. Число заполнения 𝑛𝑘 может быть любым целым
неотрицательным числом:

1 → Частиц нет. 𝑛𝑘 = 0 ∀𝑘.
|𝑘⟩ → Есть 1 частица. 𝑛𝑘 = 1, 𝑛𝑘2 = 0 ∀𝑘2 ̸= 𝑘.

|𝑘⟩ ⊗ |𝑘⟩ → Есть 2 частицы в одном состоянии. 𝑛𝑘 = 2, 𝑛𝑘2 = 0 ∀𝑘2 ̸= 𝑘.

|𝑘1⟩ ⊗ |𝑘2⟩+ |𝑘2⟩ ⊗ |𝑘1⟩√
2

→ Есть 2 частицы в разных состояниях. 𝑛𝑘1 = 𝑛𝑘2 = 1, 𝑛𝑘3 = 0 ∀𝑘3 ̸∈ {𝑘1, 𝑘2}.
. . . . . .

Бозонные базисные состояния нумеруются числами заполнения. Так что мы будем обозначать их сле-
дующим образом:

|𝑛1, 𝑛2, 𝑛2, . . . , 𝑛𝑘, . . . ⟩ = |(𝑛𝑘)⟩ — все числа заполнения перечисляются в порядке возрастания 𝑘. (8.10)

Писать бесконечную строку числе заполнения неудобно, поэтому мы будем указывать не все числа запол-
нения, а только существенные, т. е. отличные от нуля, или те, которые изменяются в рассматриваемом
процессе. Номера соответствующих состояний при этом будут указываться как индексы:

|35, 112, 023⟩ — 3 частицы в 5-м состоянии, 1 частица — в 12-м, 0 частиц в 23-м.

При этом порядок перечисления чисел заполнения не важен:

|35, 112, 023⟩ = |112, 35, 023⟩ = |112, 023, 35⟩.

Состояние
|0⟩ = | 0, 0, . . . , 0, . . .⏟  ⏞  

все нули

⟩

— это состояние в котором нет частиц, т. е. вакуумное состояние, или просто вакуум.
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8.5.2 Базис в фермионном пространстве Фока
Фермионное пространство Фока, состоит только из антисимметричных волновых функций

𝑆−𝐹 (ℋ1) =

∞⨁︁
𝑛=0

𝑆−ℋ⊗𝑛
1 .

Проиллюстрируем построение базиса в фермионном пространстве Фока на примерах.

1 → 1 — 0-частичный базисный вектор не меняется (переставлять нечего).
|𝑘⟩ → |𝑘⟩ — 1-частичный базисный вектор не меняется (переставлять нечего);

𝜓𝑘(𝜉1) → 𝜓𝑘(𝜉1) — то же, через волновые функции.
|𝑘⟩ ⊗ |𝑘⟩ → |𝑘⟩ ⊗ |𝑘⟩ − |𝑘⟩ ⊗ |𝑘⟩ = 0 — нулевой вектор, выбрасываем!

𝜓𝑘(𝜉1)𝜓𝑘(𝜉2) → 𝜓𝑘(𝜉1)𝜓𝑘(𝜉2)− 𝜓𝑘(𝜉2)𝜓𝑘(𝜉1) = 0 — то же, через волновые функции.

|𝑘1⟩ ⊗ |𝑘2⟩ → |𝑘1⟩ ⊗ |𝑘2⟩ − |𝑘2⟩ ⊗ |𝑘1⟩√
2

— 2-ч. базисный вектор, когда частицы в разных состояниях;

𝜓𝑘1(𝜉1)𝜓𝑘2(𝜉2) → 𝜓𝑘1(𝜉1)𝜓𝑘2(𝜉2)− 𝜓𝑘2(𝜉1)𝜓𝑘1(𝜉2)√
2

— то же, через волновые функции.

|𝑘2⟩ ⊗ |𝑘1⟩ → |𝑘2⟩ ⊗ |𝑘1⟩ − |𝑘1⟩ ⊗ |𝑘2⟩√
2

— такой вектор (с другим знаком) уже был, выбрасываем!

𝜓𝑘2(𝜉1)𝜓𝑘1(𝜉2) → 𝜓𝑘2(𝜉1)𝜓𝑘1(𝜉2)− 𝜓𝑘1(𝜉1)𝜓𝑘2(𝜉2)√
2

— то же, через волновые функции.
. . . . . .

Чтобы базис в фермионном пространстве Фока был определён однозначно надо договориться с каким
знаком мы берём базисные многочастичные состояния. В приведённом выше примере надо договориться,
какое из двух состояний, различающихся знаком

|𝑘1⟩ ⊗ |𝑘2⟩ − |𝑘2⟩ ⊗ |𝑘1⟩√
2

и
|𝑘2⟩ ⊗ |𝑘1⟩ − |𝑘1⟩ ⊗ |𝑘2⟩√

2

мы включаем в базис, а какое выкидываем. Мы предположили, что 𝑘 = 0, 1, 2, . . . , а значит мы можем
постулировать, что если 𝑘1 < 𝑘2, то берём первое состояние, а если 𝑘1 > 𝑘2 — то второе.

Вообще в будем брать состояние, которое получается антисимметризацией (8.3) из того состояния
|𝑘1⟩ ⊗ |𝑘2⟩ ⊗ . . . |𝑘𝑛⟩, в котором номера 1-частичных базисных состояний возрастают: 𝑘1 < 𝑘2 < · · · < 𝑘𝑛.

Мы видим, что при переходе к фермионном пространству Фока при перестановке двух частиц состоя-
ние меняет знак. Поэтому при нумерации базисных состояний не надо указывать какая частица в каком
одночастичном состоянии находится, достаточно указать числа заполнения: сколько частиц находится в
базисном состоянии с данным номером. Число заполнения 𝑛𝑘 может быть только нулём или единицей:

1 → Частиц нет. 𝑛𝑘 = 0 ∀𝑘.
|𝑘⟩ → Есть 1 частица. 𝑛𝑘 = 1, 𝑛𝑘2 = 0 ∀𝑘2 ̸= 𝑘.

|𝑘⟩ ⊗ |𝑘⟩ → Двух фермионов в одном состоянии не бывает. Выкидываем!
|𝑘1⟩ ⊗ |𝑘2⟩ − |𝑘2⟩ ⊗ |𝑘1⟩√

2
→ Есть 2 частицы в разных состояниях. 𝑛𝑘1 = 𝑛𝑘2 = 1, 𝑛𝑘3 = 0 ∀𝑘3 ̸∈ {𝑘1, 𝑘2}.

. . . . . .

Фермионные базисные состояния нумеруются числами заполнения. Так что мы будем обозначать их
следующим образом:

|𝑛1, 𝑛2, 𝑛2, . . . , 𝑛𝑘, . . . ⟩ = |(𝑛𝑘)⟩ — все числа заполнения перечисляются в порядке возрастания 𝑘.

Писать бесконечную строку числе заполнения неудобно, поэтому мы будем указывать не все числа запол-
нения, а только существенные, т. е. отличные от нуля, или те, которые изменяются в рассматриваемом
процессе. Номера соответствующих состояний при этом будут указываться как индексы:

|15, 112, 023, 132⟩ — 1 частица в 5-м состоянии, 1 частица — в 12-м, 0 частиц в 23-м, 1 — в 32-м.

При этом порядок перечисления единичек (но не нулей!) определяет знак:

|15, 112, 023, 132⟩ = −| 112, 15, 023, 132⏟  ⏞  
нечётная перестановка

⟩ = −| 112, 023, 15, 132⏟  ⏞  
нечётная перестановка

⟩ = | 023, 132, 15, 112⏟  ⏞  
чётная перестановка

⟩. (8.11)
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Состояние
|0⟩ = | 0, 0, . . . , 0, . . .⏟  ⏞  

все нули

⟩

— это состояние в котором нет частиц, т. е. вакуумное состояние, или просто вакуум.
Чтобы не писать лишние единички можно ограничиться указанием номеров состояний, в которых они

стоят. В повторим в этих обозначениях пример (8.11):

|15, 112, 023, 132⟩ = |5, 12, 32⟩ = −| 12, 5, 32⏟  ⏞  
нечётная перестановка

⟩ = −| 12, 5, 32⏟  ⏞  
нечётная перестановка

⟩ = | 32, 5, 12⏟  ⏞  
чётная перестановка

⟩.

8.6 Бозонные операторы рождения и уничтожения
Если тождественные бозоны не взаимодействуют друг с другом, а в качестве одночастичного базиса

(8.8) взят базис стационарных состояний одной частицы, то многочастичные базисные состояния в бозон-
ном пространстве Фока (8.10) также оказываются стационарными. Энергия такого состояния — сумма
энергий отдельных частиц:

𝐸𝑛1𝑛2... =

∞∑︁
𝑘=0

𝑛𝑘𝐸𝑘 =

∞∑︁
𝑘=0

ℏ𝜔𝑘⏟ ⏞ 
𝐸𝑘

𝑛𝑘, 𝑛𝑘 ∈ {0, 1, 2, 3, . . . },

Если вспомнить энергетический спектр гармонического осциллятора

𝐸осц.
𝑛 = ℏ𝜔(𝑛+ 1

2 ),

то мы видим, что спектр системы тождественных невзаимодействующих бозонов устроен почти как спектр
ансамбля невзаимодействующих гармонических осцилляторов

𝐸осц.
𝑛1𝑛2... =

∑︁
𝑘

ℏ𝜔𝑘(𝑛𝑘 + 1
2 ).

Различие лишь в отбрасывании половинок: 𝑛𝑘 + 1
2 → 𝑛𝑘. Для каждого отдельного осциллятора такое

отбрасывает половинки — это сдвиг нуля по шкале энергий так, чтобы основное состояние имело энергию
0. Так что, поскольку энергий определена с точностью до константы, такой сдвиг всегда можно провести
и тогда спектры совпадут в точности11.

Для квантовых гармонических осцилляторов существует очень удобное и красивое описание на языке
повышающих и понижающих операторов. И это описание (с минимальными изменениями и суще-
ственной переинтерпретацией) мы можем применить к системе тождественных бозонов.

(О!) Определим операторы 𝑏̂𝑘 (операторы уничтожения) и 𝑏̂†𝑘 = 𝑏̂+𝑘 (операторы рождения). Доста-
точно задать, как они действуют на базисные состояния. Каждый такой оператор действует только на
число заполнения с соответствующим номером, оставляя остальные неизменными:

𝑏̂𝑘|𝑛1, 𝑛2, . . . , 𝑛𝑘, . . . , 𝑛𝑖 . . . ⟩ =
√
𝑛𝑘 |𝑛1, 𝑛2, . . . , 𝑛𝑘 − 1, . . . , 𝑛𝑖 . . . ⟩,

𝑏̂+𝑘 |𝑛1, 𝑛2, . . . , 𝑛𝑘, . . . , 𝑛𝑖 . . . ⟩ =
√
𝑛𝑘 + 1 |𝑛1, 𝑛2, . . . , 𝑛𝑘 + 1, . . . , 𝑛𝑖 . . . ⟩.

Оператор уничтожения 𝑏̂𝑘 уничтожает одну частицу с состоянии |𝑘⟩, а если таких частиц нет, то обнуляет
вектор состояния. Оператор рождения 𝑏̂+𝑘 создаёт одну частицу с состоянии |𝑘⟩.

Имеют место обычные осцилляторные коммутационные соотношения:

[𝑏̂𝑘1 , 𝑏̂
+
𝑘2
] = 1̂ δ𝑘1𝑘2 , [𝑏̂𝑘1 , 𝑏̂𝑘2 ] = [𝑏̂+𝑘1 , 𝑏̂

+
𝑘2
] = 0. (8.12)

Операторы относящиеся к разным базисным состояниям |𝑘1⟩, |𝑘2⟩ коммутируют.
Из произведения операторов рождения и уничтожения получается оператор числа частиц в состоянии

|𝑘⟩:
𝑏̂+𝑘 𝑏̂𝑘⏟ ⏞ 
𝑛̂𝑘

|𝑛1, 𝑛2, . . . , 𝑛𝑘, . . . , 𝑛𝑖 . . . ⟩ = 𝑛𝑘 |𝑛1, 𝑛2, . . . , 𝑛𝑘, . . . , 𝑛𝑖 . . . ⟩.

Отсюда полное число частиц
𝑁̂ =

∑︁
𝑘

𝑛̂𝑘 =
∑︁
𝑘

𝑏̂+𝑘 𝑏̂𝑘,

11Правда, как правило, оказывается, что 𝐸осц.
00... =

∑︀∞
𝑘=0

1
2
ℏ𝜔𝑘 = ∞, так что константа, на которую сдвигается шкала

энергий оказывается бесконечной. Такое переопределение называется перенормировкой энергии вакуума.
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а полная энергия, т. е. гамильтониан системы невзаимодействующих частиц

𝐻̂невз. =
∑︁
𝑘

𝐸𝑘 𝑏̂
+
𝑘 𝑏̂𝑘 =

∑︁
𝑘

ℏ𝜔𝑘𝑛̂𝑘. (8.13)

Если внимательно посмотреть, то окажется, что при введении операторов рождения и уничтожения
отсутствие взаимодействия между частиц использовалось только для получения гамильтониана (8.13) (и
для некоторых наводящих соображений). Поэтому полезно посмотреть, что будет, если сделать замену
базиса в одночастичном пространстве состояний. Пусть рассмотрим два произвольных одночастичных
состояния |𝜅1⟩ и |𝜅1⟩ и посмотрим, какой оператор получает их из вакуума:

|𝜅1⟩ =
∑︁
𝑘

𝑣𝑘|𝑘⟩ =
∑︁
𝑘

𝑣𝑘 𝑏̂
+
𝑘 |0⟩⏟  ⏞  
|𝑘⟩

=

(︃∑︁
𝑘1

𝑣𝑘1 𝑏̂
+
𝑘1

)︃
⏟  ⏞  

𝑏̂+𝜅1

|0⟩,

|𝜅2⟩ =
∑︁
𝑘

𝑤𝑘|𝑘⟩ =
∑︁
𝑘

𝑤𝑘 𝑏̂
+
𝑘 |0⟩⏟  ⏞  
|𝑘⟩

=

(︃∑︁
𝑘2

𝑤𝑘2 𝑏̂
+
𝑘2

)︃
⏟  ⏞  

𝑏̂+𝜅2

|0⟩.

Операторы 𝑏̂𝜅1
и 𝑏̂𝜅2

получаем эрмитовым сопряжением:

𝑏̂𝜅1
=
∑︁
𝑘1

𝑣*𝑘1 𝑏̂𝑘1 .

Рассмотрим коммутатор

[𝑏̂𝜅1 , 𝑏̂
+
𝜅2
] =

[︃∑︁
𝑘1

𝑣*𝑘1 𝑏̂𝑘1 ,
∑︁
𝑘2

𝑤𝑘2 𝑏̂
+
𝑘2

]︃
=
∑︁
𝑘1,𝑘2

𝑣*𝑘1𝑤𝑘2 [𝑏̂𝑘1 , 𝑏̂
+
𝑘2
]⏟  ⏞  

δ𝑘1𝑘2

=
∑︁
𝑘1

𝑣*𝑘1𝑤𝑘1 = ⟨𝜅1|𝜅2⟩.

Также
[𝑏̂𝜅1

, 𝑏̂𝜅2
] = [𝑏̂+𝜅1

, 𝑏̂+𝜅2
] = 0.

Свойства повышающих и понижающих операторов выводились из их коммутационных соотношений, а
мы теперь видим, что коммутационные соотношения (8.12) выполняются для любого ортонормированного
дискретного базиса.

(!!!) Так что мы получили более общие коммутационные соотношения для операторов рождения и
уничтожения:

[𝑏̂𝜅1 , 𝑏̂
+
𝜅2
] = ⟨𝜅1|𝜅2⟩, [𝑏̂𝜅1 , 𝑏̂𝜅2 ] = [𝑏̂+𝜅1

, 𝑏̂+𝜅2
] = 0. (8.14)

Для ортонормированного дискретного базиса выполняются коммутационные соотношения (8.12)
Для ортонормированного непрерывного базиса нормировка осуществляется на дельта-функцию и мы

получаем
[𝑏̂𝜅1 , 𝑏̂

+
𝜅2
] = ⟨𝜅1|𝜅2⟩ = δ(𝜅1 − 𝜅2). (8.15)

Если базис включает непрерывную и дискретную часть:

[𝑏̂𝑛, 𝑏̂
+
𝑘 ] =

⎧⎨⎩ δ𝑛𝑘, дискретный спектр,
δ(𝑛− 𝑘), непрерывный спектр,

0, состояния из разных спектров.
.

8.7 Фермионные операторы рождения и уничтожения

Если тождественные фермионы не взаимодействуют друг с другом, а в качестве одночастичного
базиса (8.8) взят базис стационарных состояний одной частицы, то многочастичные базисные состояния в
фермионном пространстве Фока (8.10) также оказываются стационарными. Энергия такого состояния
— сумма энергий отдельных частиц:

𝐸𝑛1𝑛2... =

∞∑︁
𝑘=0

𝑛𝑘𝐸𝑘 =

∞∑︁
𝑘=0

ℏ𝜔𝑘⏟ ⏞ 
𝐸𝑘

𝑛𝑘, 𝑛𝑘 ∈ {0, 1},
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Если вспомнить энергетический спектр двухуровневой системы

𝐸2ур.
𝑛 = ℏ𝜔𝑛, 𝑛 ∈ {0, 1},

то мы видим, что спектр системы тождественных невзаимодействующих фермионов устроен как спектр
ансамбля невзаимодействующих двухуровневых систем.

Для квантовых двухуровневых систем существует очень удобное и красивое описание на языке мат-
риц спина 1

2 и повышающих и понижающих проекцию спина операторов12 𝑠±. И это описание
(с некоторыми изменениями и существенной переинтерпретацией) мы можем применить к системе тож-
дественных фермионов.

(!) Определим операторы 𝑓𝑘 = 𝑓−𝑘 (операторы уничтожения) и 𝑓†𝑘 = 𝑓+𝑘 (операторы рождения).
Достаточно задать, как они действуют на базисные состояния. Каждый такой оператор действует только
на число заполнения с соответствующим номером, оставляя остальные неизменными. Приведём действие
операторов в случае, когда число заполнения с номером 𝑘 поставлено в начало строки (к такому
порядку всегда можно привести, см. (8.11)):

𝑓𝑘|0𝑘, (𝑛𝑖 ̸=𝑘)⟩ = 0 — это нулевой вектор! Не путайте с вакуумом |0⟩,
𝑓𝑘|1𝑘, (𝑛𝑖 ̸=𝑘)⟩ = |0𝑘, (𝑛𝑖 ̸=𝑘)⟩,
𝑓+𝑘 |0𝑘, (𝑛𝑖 ̸=𝑘)⟩ = |1, (𝑛𝑖 ̸=𝑘)⟩,
𝑓+𝑘 |1𝑘, (𝑛𝑖 ̸=𝑘)⟩ = 0.

Здесь (𝑛𝑖 ̸=𝑘) — все остальные числа заполнения, они и их порядок остаются неизменными. Оператор
уничтожения 𝑓𝑘 уничтожает одну частицу с состоянии |𝑘⟩, а если таких частиц нет, то обнуляет вектор
состояния. Оператор рождения 𝑓+𝑘 создаёт одну частицу с состоянии |𝑘⟩.

Вместо коммутационных соотношений (которые были у бозонов) имеют место антикоммутационные
соотношения:

[𝑓𝑘1 , 𝑓
+
𝑘2
]+ = 1̂ δ𝑘1𝑘2 , [𝑓𝑘1 , 𝑓𝑘2 ]+ = [𝑓+𝑘1 , 𝑓

+
𝑘2
]+ = 0. (8.16)

Операторы относящиеся к разным базисным одночастичным состояниям |𝑘1⟩, |𝑘2⟩ антикоммутируют.
Из произведения операторов рождения и уничтожения получается оператор числа частиц в состоянии

|𝑘⟩:
𝑓+𝑘 𝑓𝑘⏟  ⏞  
𝑛̂𝑘

|𝑛1, 𝑛2, . . . , 𝑛𝑘, . . . , 𝑛𝑖 . . . ⟩ = 𝑛𝑘 |𝑛1, 𝑛2, . . . , 𝑛𝑘, . . . , 𝑛𝑖 . . . ⟩.

Отсюда полное число частиц
𝑁̂ =

∑︁
𝑘

𝑛̂𝑘 =
∑︁
𝑘

𝑓+𝑘 𝑓𝑘,

а полная энергия, т. е. гамильтониан системы невзаимодействующих частиц

𝐻̂невз. =
∑︁
𝑘

𝐸𝑘𝑓
+
𝑘 𝑓𝑘 =

∑︁
𝑘

ℏ𝜔𝑘𝑛̂𝑘. (8.17)

Если внимательно посмотреть, то окажется, что при введении операторов рождения и уничтожения
отсутствие взаимодействия между частиц использовалось только для получения гамильтониана (8.17) (и
для некоторых наводящих соображений). Поэтому полезно посмотреть, что будет, если сделать замену
базиса в одночастичном пространстве состояний. Пусть рассмотрим два произвольных одночастичных
состояния |𝜅1⟩ и |𝜅1⟩ и посмотрим, какой оператор получает их из вакуума:

|𝜅1⟩ =
∑︁
𝑘

𝑣𝑘|𝑘⟩ =
∑︁
𝑘

𝑣𝑘 𝑓
+
𝑘 |0⟩⏟  ⏞  
|𝑘⟩

=

(︃∑︁
𝑘1

𝑣𝑘1𝑓
+
𝑘1

)︃
⏟  ⏞  

𝑓+
𝜅1

|0⟩,

|𝜅2⟩ =
∑︁
𝑘

𝑤𝑘|𝑘⟩ =
∑︁
𝑘

𝑤𝑘 𝑓
+
𝑘 |0⟩⏟  ⏞  
|𝑘⟩

=

(︃∑︁
𝑘2

𝑤𝑘2𝑓
+
𝑘2

)︃
⏟  ⏞  

𝑓+
𝜅2

|0⟩.

12Напомним

𝑠+ =

(︂
0 1
0 0

)︂
, 𝑠− =

(︂
0 0
1 0

)︂
,

𝑠2+ = 𝑠2− = 0, 𝑠+𝑠− =

(︂
1 0
0 0

)︂
, 𝑠−𝑠+ =

(︂
0 0
0 1

)︂
, [𝑠+, 𝑠−] =

(︂
1 0
0 −1

)︂
, [𝑠+, 𝑠−]+ =

(︂
1 0
0 1

)︂
= 1̂2.
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Операторы 𝑓𝜅1 и 𝑓𝜅2 получаем эрмитовым сопряжением:

𝑓𝜅1
=
∑︁
𝑘1

𝑣*𝑘1𝑓𝑘1 .

Рассмотрим антикоммутатор

[𝑓𝜅1
, 𝑓+𝜅2

]+ =

[︃∑︁
𝑘1

𝑣*𝑘1𝑓𝑘1 ,
∑︁
𝑘2

𝑤𝑘2𝑓
+
𝑘2

]︃
+

=
∑︁
𝑘1,𝑘2

𝑣*𝑘1𝑤𝑘2 [𝑓𝑘1 , 𝑓
+
𝑘2
]+⏟  ⏞  

δ𝑘1𝑘2

=
∑︁
𝑘1

𝑣*𝑘1𝑤𝑘1 = ⟨𝜅1|𝜅2⟩.

Также
[𝑓𝜅1

, 𝑓𝜅2
]+ = [𝑓+𝜅1

, 𝑓+𝜅2
]+ = 0.

Свойства повышающих и понижающих операторов выводились из их антикоммутационных соотно-
шений, а мы теперь видим, что антикоммутационные соотношения (8.16) выполняются для любого орто-
нормированного дискретного базиса.

(!!!) Так что мы получили более общие антикоммутационные соотношения для операторов рождения
и уничтожения:

[𝑓𝜅1
, 𝑓+𝜅2

]+ = ⟨𝜅1|𝜅2⟩, [𝑓𝜅1
, 𝑓𝜅2

]+ = [𝑓+𝜅1
, 𝑓+𝜅2

]+ = 0. (8.18)

Для ортонормированного дискретного базиса выполняются антикоммутационные соотношения (8.16)
Для ортонормированного непрерывного базиса нормировка осуществляется на дельта-функцию и мы

получаем
[𝑓𝜅1

, 𝑓+𝜅2
]+ = ⟨𝜅1|𝜅2⟩ = δ(𝜅1 − 𝜅2). (8.19)

Если базис включает непрерывную и дискретную часть:

[𝑓𝑛, 𝑓
+
𝑘 ]+ =

⎧⎨⎩ δ𝑛𝑘, дискретный спектр,
δ(𝑛− 𝑘), непрерывный спектр,

0, состояния из разных спектров.
.

(ф*) Если в паре операторов рождения и уничтожения поменять операторы местами

𝑓 ′𝑘 = 𝑓+𝑘 , 𝑓 ′+𝑘 = 𝑓𝑘,

то антикоммутационные соотношения не изменятся, придётся только изменить соответствующее число
заполнения:

𝑛′𝑘 = 1− 𝑛𝑘 т. е. 1′𝑘 = 0𝑘, 0′𝑘 = 1𝑘.

Эта перестановка соответствует тому, что вместо наличия/отсутствия частицы мы рассматриваем от-
сутствие/наличие дырки. С точки зрения операторов рождения и уничтожения различия между этими
описаниями нет. Поэтому, если для какого-то одночастичного состояния 𝐸𝑘 < 0, то можно для состояния
𝑘 перейти от частицы к дырке и получить 𝐸′

𝑘 > 0. Такую замену мы обсуждали для отрицательных
уровней энергии уравнения Дирака (см. § 7.4).

8.8 Размышление о коммутативности и антикоммутативности**

Мы привыкли, что если операторы 𝐴 и 𝐵̂ действуют на разные подсистемы, то они автоматически
коммутируют.

Бозонные операторы рождения и уничтожения ведут себя ожидаемым образом: система разбивается
на независимые подсистемы (осцилляторы) и повышающие-понижающие операторы для разных осцил-
ляторов коммутируют друг с другом.

Фермионные операторы рождения и уничтожения нарушают наши ожидания. Мы, на самом деле,
честно получили антикоммутационные соотношения для операторов, относящихся к одному базисному
одночастичному состоянию, а антикоммутативность операторов для разных ячеек (базисных одночастич-
ных состояний) была постулирована.

(???)

1. Можно ли было сохранить привычную ситуацию, когда операторы, действующие на разные подси-
стемы (ячейки) коммутируют?

2. Зачем мы постулировали антикоммутативность фермионных операторов для разных ячеек?
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3. Мы можем рассматривать протоны и нейтроны как разные частицы, тогда протонные операторы
рождения и уничтожения должны коммутировать с нейтронными операторами рождения и уничто-
жения. Но мы можем рассматривать протоны и нейтроны как разные состояния одной частицы —
нуклона13. При таком рассмотрении протонные операторы рождения и уничтожения должны ан-
тикоммутировать с нейтронными операторами рождения и уничтожения. Какое из этих описаний
правильно, а если правильны оба описания, то почему?

Если внимательно пересмотреть определение фермионных операторов, то мы видим, что определение
легко модифицировать, сделав операторы, относящиеся к разным ячейкам, коммутативными. Для этого
достаточно изменить обозначения и отказаться от перемены знака при перестановке чисел заполнения
(8.11). Смена знака при перестановке чисел заполнения предполагала, что мы описываем перестановку
частиц, как перестановку соответствующих чисел заполнения, но это не обязательно.

Покажем теперь, как связаны между собой фермионные операторы определённые двумя разными
способами.

Начнём со случая, когда операторы, относящиеся к разным ячейкам коммутируют.
Рассмотрим три пары операторов рождения и уничтожения:

𝐴1 = 𝐴−
1 , 𝐴+

1 ; 𝐴2 = 𝐴−
2 , 𝐴+

2 ; 𝐴3 = 𝐴−
3 , 𝐴+

3 .

Операторы, относящиеся к одной ячейке ведут себя как обычные фермионные операторы:

𝐴2
𝑖 = (𝐴+

𝑖 )
2 = 0, [𝐴𝑖, 𝐴

+
𝑖 ]+ = 1̂.

Операторы, относящиеся к разным ячейкам коммутируют:

[𝐴±
1 , 𝐴

±
2 ] = 0 ⇔ 𝐴±

1 𝐴
±
2 = 𝐴±

2 𝐴
±
1 и т. д.

(!) Переопределим операторы рождения и уничтожения второй пары (назовём эту процедуру модифика-
цией ячейки 2 с помощью ячейки 1 ):

𝑎̂2 = 𝑎̂−2 = 𝐴2(1− 𝑛̂1)−𝐴2𝑛̂1, (8.20)

𝑎̂†2 = 𝑎̂+2 = 𝐴+
2 (1− 𝑛̂1)−𝐴+

2 𝑛̂1. (8.21)

Здесь операторы

𝑛̂1 = 𝐴+
1 𝐴1 = 𝑛̂+1 = 𝑛̂21, (1− 𝑛̂1) = 𝐴1𝐴

+
1 = (1− 𝑛̂1)

† = (1− 𝑛̂1)
2

— это проекторы на подпространство, где в ячейке 1 есть одна частица, и на подпространство, где в ячейке
1 нуль частиц. Эти операторы коммутируют друг с другом и с 𝐴±

2 , 𝐴±
3 . Произведение этих операторов

равно нулю:
𝑛̂1(1− 𝑛̂1) = 0.

Отличие операторов 𝑎̂±2 от операторов 𝐴±
2 состоит в том, что операторы 𝑎̂±2 «смотрят» есть ли частица

в ячейке 1, если частицы в ячейке нет, то в ячейку 2 просто добавляется частица, а если в ячейке 1 частица
есть, то в ячейку 2 добавляется частица и меняется знак вектора состояния.

С учётом свойств операторов 𝑛̂1 и (1− 𝑛̂1) очевидно, что

𝑎̂22 = (𝑎̂+2 )
2 = 0, [𝑎̂2, 𝑎̂

+
2 ]+ = [𝐴2, 𝐴

+
2 ]+ = 1, 𝑎̂+2 𝑎̂2 = 𝐴+

2 𝐴2 = 𝑛̂2, [𝑎̂±2 , 𝐴
±
3 ] = 0, [𝑎̂±2 , 𝐴

±
1 ]+ = 0.

(!) 𝑎̂±2 по отношению к ячейке 2 ведут себя подобно операторам 𝐴±
2 , т. е. как операторы рождения и

уничтожения. С операторами ячейки 1 (с помощью которых мы модифицировали ячейку 2) модифициро-
ванные операторы уже антикоммутиурют, а со операторами всех остальных ячеек (𝐴±

3 ) по-прежнему
коммутируют.

(!) Чтобы добиться того, чтобы все операторы рождения и уничтожения, относящиеся к разным ячей-
кам антикоммутировали друг друга надо чтобы для любой пары ячеек операторы одной были модифи-
цированы с помощью операторов другой. Если мы нумеруем ячейки с натуральными числами, то можно
договориться, что каждая ячейка модифицируется с помощью всех предыдущих.

Обратный переход от ситуации, когда операторы разных ячеек антикоммутируют, к ситуации, когда
они коммутируют осуществляется полностью аналогичным образом.

Рассмотрим три пары фермионных операторов рождения и уничтожения:

𝑎̂1 = 𝑎̂−1 , 𝑎̂+1 ; 𝑎̂2 = 𝑎̂−2 , 𝑎̂+2 ; 𝑎̂3 = 𝑎̂−3 , 𝑎̂+3 .

13При таком рассмотрении протон отличается от нейтрона одним квантовым число — проекцией изоспина, которая ста-
новится дополнительным двоичным аргументом одночастичной волновой функции.
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Операторы, относящиеся к разным парам антикоммутируют:

[𝑎̂±1 , 𝑎̂
±
2 ]+ = 0 ⇔ 𝑎̂±1 𝑎̂

±
2 = −𝑎̂±2 𝑎̂

±
1 и т. д.

(!) Переопределим операторы рождения и уничтожения второй пары (используем ту же процедуру
модификацией ячейки 2 с помощью ячейки 1 ):

𝐴2 = 𝐴−
2 = 𝑎̂2(1− 𝑛̂1)− 𝑎̂2𝑛̂1, (8.22)

𝐴†
2 = 𝐴+

2 = 𝑎̂+2 (1− 𝑛̂1)− 𝑎̂+2 𝑛̂1. (8.23)

Здесь операторы

𝑛̂1 = 𝑎̂+1 𝑎̂1, (1− 𝑛̂1) = 𝑎̂1𝑎̂
+
1

— это проекторы на подпространство, где в ячейке 1 есть одна частица, и на подпространство, где в ячейке
1 нуль частиц.

С учётом свойств операторов 𝑛̂1 и (1− 𝑛̂1) очевидно, что

𝐴2
2 = (𝐴+

2 )
2 = 0, [𝐴2, 𝐴

+
2 ]+ = [𝑎̂2, 𝑎̂

+
2 ]+ = 1, 𝐴+

2 𝐴2 = 𝑎̂+2 𝑎̂2 = 𝑛̂2, [𝐴±
2 , 𝑎̂

±
3 ]+ = 0, [𝐴±

2 , 𝑎̂
±
1 ] = 0.

(!) 𝐴±
2 по отношению к ячейке 2 ведут себя подобно операторам 𝑎̂±2 , т. е. как операторы рождения

и уничтожения. С операторами ячейки 1 (с помощью которых мы модифицировали ячейку 2) модифи-
цированные операторы уже коммутиурют, а со операторами всех остальных ячеек (𝑎̂±3 ) по-прежнему
антикоммутируют.

(!) Чтобы добиться того, чтобы все операторы рождения и уничтожения, относящиеся к разным ячей-
кам коммутировали друг друга надо чтобы для любой пары ячеек операторы одной были модифици-
рованы с помощью операторов другой. Если мы нумеруем ячейки с натуральными числами, то можно
договориться, что каждая ячейка модифицируется с помощью всех предыдущих.

Мы ответили на первый вопрос: Можно ли было сохранить привычную ситуацию, когда опе-
раторы, действующие на разные подсистемы (ячейки) коммутируют? Как мы убедились, это
было возможно!

(*) Оператор перестановки частиц в ячейках 1 и 2 для двух рассматриваемых представлений выглядит
различно:

𝑃12 = 𝑎̂+1 𝑎̂
+
2 𝑎̂1𝑎̂2⏟  ⏞  

отсюда часто выводят антикоммутативность 𝑎̂±1 ,𝑎̂
±
2

= −𝑛̂1𝑛̂2 = −𝐴+
2 𝐴2𝐴

+
1 𝐴1.

Этот оператор если частицы есть в обоих ячейках переставляет их (что приводит к умножению состояния
на −1), а если в одной или обеих ячейках нет частицы, то оператор обнуляет состояние.

Но второй вопрос от этого приобрёл только большую актуальность: Зачем мы постулировали анти-
коммутативность фермионных операторов для разных ячеек? Дело в том, что мы хотим, чтобы
наши коммутационные или антикоммутационные соотношения не были привязаны к конкретному базису
одночастичных состояний. Для фермионов именно антикоммутационные соотношения удаётся написать
независимым от базиса образом (8.18):

[𝑓𝜅1 , 𝑓
+
𝜅2
]+ = ⟨𝜅1|𝜅2⟩, [𝑓𝜅1 , 𝑓𝜅2 ]+ = [𝑓+𝜅1

, 𝑓+𝜅2
]+ = 0.

(*) Раз наши коммутационные соотношения для фермионных операторов оказались зависимы от
базиса, возникает дополнительный вопрос: Как быть, если одночастичный базис был непрерыв-
ным? Можно, вспомнить, что в теории множеств доказывается (с использованием аксиомы выбора),
что на любом множестве существует соотношение порядка, хотя модифицировать операторы рождения и
уничтожении континуальное число раз — это как-то неконструктивно.

Наконец третий вопрос: Коммутируют или антикоммутируют протонные операторы
рождения и уничтожения с нейтронными, или мы можем выбирать коммутатив-
ность/антикоммутативность по своему произволу? Мы можем сначала положить, что протонные
операторы антикоммутируют с нейтронными, а потом модифицировать каждую протонную ячейку с по-
мощью всех нейтронных и получить набор протонных операторов, которые уже коммутируют со всеми
нейтронными. Эти описания эквивалентны и одинаково удобны до тех пор, пока нам не надо рассмат-
ривать частицы, которые представляют собой суперпозицию протона и нейтрона. Менять базисы од-
ночастичных состояний для протонов и нейтронов по отдельности оба описания не мешают.
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8.9 Выражение наблюдаемых через операторы рождения-
уничтожения*

Мы уже выражали гамильтониан системы невзаимодействующих тождественных частиц через опера-
торы рождения и уничтожения для базиса одночастичных стационарных состояний (8.13), (8.17):

𝐻̂невз.б =
∑︁
𝑘

𝐸𝑘 𝑏̂
+
𝑘 𝑏̂𝑘 =

∑︁
𝑘

ℏ𝜔𝑘𝑛̂𝑘, 𝐻̂невз.ф =
∑︁
𝑘

𝐸𝑘𝑓
+
𝑘 𝑓𝑘 =

∑︁
𝑘

ℏ𝜔𝑘𝑛̂𝑘.

В тех случаях, когда бозонные и фермионные операторы входят в формулы одинаково, мы, чтобы не
повторять одно и то же будем писать 𝑎̂± имея в виду либо бозонные, либо фермионные операторы. Так
обе формулы для гамильтониана системы невзаимодействующих тождественных частиц запишем как

𝐻̂невз. =
∑︁
𝑘

𝐸𝑘𝑎̂
+
𝑘 𝑎̂𝑘 =

∑︁
𝑘

ℏ𝜔𝑘𝑛̂𝑘.

Для непрерывного спектра суммирование следует заменить интегрированием:

𝐻̂невз. =
∑︁

𝑘∈дискр.сп.

𝐸𝑘 𝑎̂
+
𝑘 𝑎̂𝑘⏟  ⏞  
𝑛̂𝑘

+

ˆ

непр.сп

𝐸𝑘 𝑎̂
+
𝑘 𝑎̂𝑘⏟  ⏞  
𝜌(𝑘)

𝑑𝑘.

В непрерывном спектре 𝑎̂+𝑘 𝑎̂𝑘 = 𝜌(𝑘) — плотность числа частиц по параметру 𝑘.
Для других эрмитовых операторов ситуация аналогичная, так что для системы тождественных невза-

имодействующих частиц в потенциале одночастичный гамильтониан имеет вид

𝐻̂1ч. =
p̂2

2𝑚
+ 𝑈(r),

а гамильтониан системы

𝐻̂невз. =

ˆ
p2

2𝑚
𝑎̂+p 𝑎̂p 𝑑

3p+

ˆ
𝑈(r) 𝑎̂+r 𝑎̂r 𝑑

3r. =

ˆ
𝑎̂+p

p2

2𝑚
𝑎̂p 𝑑

3p+

ˆ
𝑎̂+r 𝑈(r) 𝑎̂r 𝑑

3r⏟  ⏞  
эта запись для красоты

.

Здесь мы использовали два набора операторов рождения и уничтожения: для состояний с определённым
импульсом 𝑎̂±p и для состояний с определёнными координатами 𝑎̂±r .

Часто рассматривают систему в ящике с периодическими граничными условиями, тогда импульс ста-
новится дискретным и интеграл по импульсу превращается в сумму по импульсу.

Введём теперь парное взаимодействие взаимодействие частиц (каждой с каждой) с потенциалом
𝑉 (r1 − r1). Соответствующая добавка будет уже 4-й степени по оператором рождения и уничтожения.
В координатном базисе

𝑉 =
1

2

x
𝑉 (r1 − r1) 𝜌(r1) 𝜌(r2) 𝑑

3r1 𝑑
3r2 =

1

2

x
𝑎̂+r2 𝑎̂

+
r1𝑉 (r1 − r1) 𝑎̂r1 𝑎̂r2 𝑑

3r1 𝑑
3r2.

Коэффициент 1
2 нужен для избежания двойного счёта. Здесь 𝑎̂r1 𝑎̂r2 — оператор уничтожения пары частиц

в точках r1 и r2, а 𝑎̂+r2 𝑎̂
+
r1 = (𝑎̂r1 𝑎̂r2)

† — оператор рождения такой же пары.
В импульсном базисе тот же оператор имеет вид

𝑉 =
1

2

y
𝑎̂+p2−q 𝑎̂

+
p1+q𝑉 (q) 𝑎̂p1 𝑎̂p2 𝑑

3p1 𝑑
3p2 𝑑

3q, 𝑉 (r) =

ˆ
𝑉 (q) ei

qr
ℏ 𝑑3q.

Здесь q — переданный импульс. Суммарный импульс сохраняется, в силу того, что потенциал 𝑉 (r1 − r1)
инвариантен относительно одновременного сдвига обеих частиц.

Через операторы рождения и уничтожения можно выразить гамильтонианы, допускающие изменение
числа частиц.

Член описывающий распад частицы в ячейке 1 на две частицы в ячейках 2 и 3 выглядит так

𝑎̂†3𝑎̂
†
2𝐴1→2,3𝑎̂1. (8.24)

Но этот член не может входить в гамильтониан без эрмитово сопряженного члена, описывающего слияние
частиц из ячеек 2 и 3 в ячейке 1:

𝑎̂†1𝐴
*
1→2,3𝑎̂2𝑎̂3. (8.25)

Как мы видим, эрмитовость гамильтониана соответствует (как и обычно) обратимости эволюции замкну-
той системы.

Если система не подвержена действию внешних источников, то в подобных (8.24) и (8.25) трёхчастич-
ных членах число фермионных операторов обязательно должно быть чётным, чтобы соответствующий
процесс сохранял момент импульса.
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8.10 Как из двух фермионов сделать один бозон?**
Фермионы имеют полуцелый спин и для них действует принцип запрета Паули: в каждом состоянии

может быть не более одного фермиона. Бозоны имеют целый спин и для них принцип запрета Паули не
действует: в каждом состоянии число бозонов может быть сколь угодно велико.

Однако мы знаем, что при сложении двух полуцелых спинов суммарный спин оказывается целым и во
многих случаях бозоны состоят из фермионов, но почему-то не всякая пара фермионов образует бозон:

• альфа-частица состоит из двух протонов (фермионов) и двух нейтронов (фермионов) и является
бозоном,

• атом гелия состоит из альфа-частицы (бозона) и двух электронов (фермионов) и является бозоном,

• куперовская пара в сверхпроводнике состоит из двух электронов (фермионов) взаимодействующих
через обмен фононами (бозонами) и является бозоном (возможна бозе-конденсация куперовских пар,
приводящая к сверхпроводимости),

• пара электронов на 𝑠-оболочке в атоме имеет суммарный спин 0, но почему-то бозона не образует
(и бозе конденсация таких пар в атоме невозможна).

Возникает вполне естественный вопрос:
(???) Фермионы внутри бозонов остаются фермионами и на них по-прежнему действует принцип запрета
Паули. Если два бозона находятся в одинаковом состоянии, то и фермионы внутри них должны находиться
в одинаковых состояниях, что запрещено. И на примере двух электронов на 𝑠-оболочке атома мы именно
это и наблюдаем. Но в других случаях почему-то фермионы как-то «обходят» принцип запрета. Как
вообще возможно из двух фермионов построить бозон и почему такое объединение фермионов в бозоны
иногда происходит, а иногда не происходит?

Начнём с примера куперовской пары. Операторами рождения и уничтожения куперовской пары в
литературе часто называют следующие комбинации электронных операторов рождения и уничтожения
(допуская при этом некоторую небрежность)

𝑐𝑘𝑛 = 𝑐−𝑘𝑛 = 𝑓𝑘𝑛1𝑓𝑘𝑛2, 𝑐†𝑘𝑛 = 𝑐+𝑘𝑛 = 𝑓+𝑘𝑛2𝑓
+
𝑘𝑛1.

Здесь 𝑘 нумерует суммарный импульс пары, 𝑛 направление относительного импульса (модуль относитель-
ного импульса считаем заданным), а 1,2 нумеруют взаимоисключающие спиновые состояния (например
↑ и ↓).

Операторы 𝑐±𝑘𝑛 с разными номерами коммутируют друг с другом, но бозонными операторами они быть
не могут, потому, что

(𝑐±𝑘𝑛)
2 = 0.

И вообще при фиксированных 𝑘, 𝑛 эти операторы ведут себя подобно фермионным оператором, в частно-
сти

[𝑐𝑘𝑛, 𝑐
+
𝑘𝑛]+ = 1, 𝑐+𝑘𝑛𝑐𝑘𝑛 = 𝑛̂𝑘𝑛,

где 𝑛̂𝑘𝑛 — число пар в состоянии с номерами 𝑘, 𝑛, которое может принимать значения 0 и 1. Коммутатор
же операторов рождения и уничтожения пары имеет вид

[𝑐𝑘𝑛, 𝑐
+
𝑘𝑛] = 𝑐𝑘𝑛𝑐

+
𝑘𝑛⏟  ⏞  

1−𝑐+𝑘𝑛𝑐𝑘𝑛

−𝑐+𝑘𝑛𝑐𝑘𝑛 = 1− 2𝑛̂𝑘𝑛.

При малых средних числах заполнения он, конечно, близок к бозонному коммутатору, но настоящие
бозонные операторы должны работать при больших числах заполнения (для бозе-конденсации числа
заполнения должны быть макроскопически большими).

Операторы рождения и уничтожения бозонов тем не менее могут быть построены из операторов 𝑐±𝑘𝑛.
Рассмотрим оператор14, создающий пару в суперпозиции 𝑁 состояний 𝑘, 𝑛 с фиксированным 𝑘:

𝑏̂𝑘 =
1√
𝑁

𝑁∑︁
𝑛=1

𝑐𝑘𝑛, 𝑏̂+𝑘 =
1√
𝑁

𝑁∑︁
𝑛=1

𝑐+𝑘𝑛. (8.26)

Операторы 𝑏̂±𝑘 с разными значениями 𝑘 коммутируют, посмотрим теперь коммутатор

[𝑏̂𝑘, 𝑏̂
+
𝑘 ] =

[︃
1√
𝑁

𝑁∑︁
𝑛=1

𝑐𝑘𝑛,
1√
𝑁

𝑁∑︁
𝑛=1

𝑐+𝑘𝑛

]︃
=

1

𝑁

𝑁∑︁
𝑛=1

[𝑐𝑘𝑛, 𝑐
+
𝑘𝑛] = 1− 2

∑︀𝑁
𝑛=1 𝑛̂𝑘𝑛
𝑁

.

14Если квантовое число 𝑛 пробегает непрерывный спектр, то вместо суммы следует взять интеграл.
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При 𝑁 → ∞ если суммарное число заполнения 𝑛̂𝑘 =
∑︀𝑁
𝑛=1 𝑛̂𝑘𝑛 мало15 (равно 𝑜(𝑁)) в пределе мы получаем

бозонные коммутационное соотношения
[𝑏̂𝑘, 𝑏̂

+
𝑘′ ] = δ𝑘𝑘′ .

Таким образом в «настоящей» (бозонной) куперовской паре относительный импульс определён только по
модулю.

(*) Мы выразили операторы 𝑏̂±𝑘 через операторы 𝑐±𝑘𝑛, но операторы 𝑐±𝑘𝑛 не могут быть выражены через
𝑏̂±𝑘 . Это ясно из того, что любые операторы 𝑏̂±|𝜓⟩ должны быть бозонными (см. (8.14)), а операторы 𝑐±𝑘𝑛
бозонными не являются.

(ф) Принцип запрета Паули не мешает парам находиться в одном состоянии так как фермион внутри
пары определённого состояния не имеет, что проявляется в том, что операторы 𝑏̂±𝑘 не могут быть раз-
ложены в произведение двух фермионных операторов. Минимальное число слагаемых в суперпозиции
𝑁 (назовём его рангом суперпозиции, по аналогии с рангом матрицы) задаёт максимальную степень, в
которую можно возвести операторы 𝑏̂±𝑘 , чтобы они ещё не обнулились.

(𝑏̂±𝑘 )
𝑁+1 = 0.

(ф?) Что в нашем рассмотрении куперовской пары является общим для всех случаев построения бо-
зона из фермионов, а что относится к специфике данной системы? 𝑘 — суммарный импульс пары, а в
общем случае 𝑘 — набор квантовых чисел, описывающих состояние бозона. 𝑛 — направление относитель-
ного импульса, а в общем случае 𝑛 — квантовые числа, нумерующие слагаемые в суперпозиции. 1 и 2 —
проекции спинов двух электронов, а в общем случае — скоррелированные квантовые числа в суперпозиции
фермионов. 𝑁 — минимальное число слагаемых в разложении суперпозиции на тензорные произведения
состояний отдельных фермионов (ранг суперпозиции), для получения бозона из фермионов обязательно
𝑁 = ∞.

(!) Подробнее о ранге суперпозиции. Ранг матрицы — число линейно-независимых строк (или столб-
цов). Матрица ранга 1 может быть представлена как произведение столбца на строку. Матрица ранга
𝑁 может быть представлена как сумма не менее чем 𝑁 произведений столбцов на строки. Функция
двух переменных может рассматриваться как матрица (возможно бесконечная) в роли индексов которой
выступают две переменные. Индексы такой матрицы-функции могут быть как дискретными, так и непре-
рывными. Аналогом матрицы ранга 1 является функция, вида 𝜓(𝑥, 𝑦) = 𝛼(𝑥)𝛽(𝑦). Аналогом матрицы
ранга 𝑁 является функция, представимая как сумма не менее чем 𝑁 произведений вида 𝛼𝑛(𝑥)𝛽𝑛(𝑦). По-
скольку суммы волновых функций мы называем суперпозициями, число 𝑁 мы будем называть рангом
суперпозиции. Если оператор создаёт или уничтожает системы в состоянии с рангом суперпозиции 𝑁 , то
оператор рождения или уничтожения такого состояния разлагается на не менее чем 𝑁 слагаемых, каж-
дое из которых имеет вид произведения операторов рождения или уничтожения. Так что операторы вида
(8.26) мы будем называть операторами уничтожения и рождения с рангом суперпозиции 𝑁 .

Мы разобрались почему куперовская пара всё-таки бозон, также стало понятно почему пара 𝑠-
электронов бозона не образует (для пары 𝑠-электронов 𝑁 = 1). Открытыми остаются вопросы с альфа-
частицей и атомом гелия.

Здесь нам надо сослаться на условия, при которых выводится теорема о связи спина со статистикой.
Эта теорема предполагает лоренц-инвариантность. Для пары 𝑠-электронов лоренц-инвариантность нару-
шается существованием выделенной системы отсчёта связанной с ядром. Существование альфа-частицы и
атома гелия от системы отсчёта не зависит и они попадают под условия теоремы о связи спина со статисти-
кой. Понятно, что если разложить операторы рождения и уничтожения атома гелия или альфа-частицы
по фермионным операторам, то мы должны получить суперпозицию произведений с бесконечным рангом
𝑁 .

15Для этого можно потребовать чтобы средняя энергия была конечной.
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Глава 9

Сложный атом

Как в классической, так и в квантовой механике задача двух тел решается аналитически, а уже с
задачей трёх тел возникают сложности. Поэтому уже начиная с атома гелия (три тела: ядро и два элек-
трона) приходится обращаться к приближённым методам, таким как вариационный метод, численные
вычисления, теория возмущений, приближение среднего поля и их комбинации.

В квантовой механике задача многих тел осложняется быстрым ростом количества информации, необ-
ходимого для описания системы с ростом числа частиц: в классике надо для 𝑁 частиц задать 6𝑁 чисел
(координат и импульсов) и количество информации растёт линейно с 𝑁 , в квантовой механике для 𝑁
частиц надо задать волновую функцию от 3𝑁 переменных и количество информации растёт экспонен-
циально (если положить по 100 узлов решётки на каждую координатную ось, то добавление 1 частицы
увеличивает число узлов в 1003 раз). По этой причине бездумный численный счёт для многочастичных
квантовых систем оказывается невозможным: прежде чем переходить к численным вычислениям прихо-
дится упрощать задачу, чтобы она могла за разумное время считаться на компьютере с конечной памятью.

9.1 Вариационный принцип* → КПКМ-4.11
См. книгу М.Г. Иванов «Как понимать квантовую механику», § 4.11 «Вариационный принцип»

(стр. 128).

9.2 Вариационный метод для атома гелия
Гамильтониан — самосопряжённый оператор, для него можно решить спектральную задачу (стаци-

онарное уравнение Шрёдингера) и получить набор собственных чисел и ортонормированный базис соб-
ственных функций, по которому разложить произвольное состояние 𝜓:

|𝜓⟩ =
∑︁
𝐸,𝑖

|𝜑𝐸𝑖⟩⟨𝜑𝐸𝑖|𝜓⟩+
ˆ ∑︁

𝑖

|𝜑𝐸𝑖⟩⟨𝜑𝐸𝑖|𝜓⟩𝑑𝐸.

Здесь сумма по 𝐸 берётся по дискретному спектру, а интеграл — по непрерывному, индекс 𝑖 нумерует
базисные векторы с одинаковой энергией.

Если состояние 𝜓 нормировано на 1, то средняя энергия оказывается средним взвешенным (с весом∑︀
𝑖 |⟨𝜑𝐸𝑖|𝜓⟩|

2) собственных уровней энергии

⟨𝜓|𝐻̂|𝜓⟩ =
∑︁
𝐸

𝐸
∑︁
𝑖

|⟨𝜑𝐸𝑖|𝜓⟩|2⏟  ⏞  
𝑝𝐸

+

ˆ
𝐸
∑︁
𝑖

|⟨𝜑𝐸𝑖|𝜓⟩|2⏟  ⏞  
𝜌(𝐸)

𝑑𝐸.

Если среди уровней энергии есть минимальный (основной уровень) 𝐸0, то среднее не может быть меньше
чем 𝐸0, причём оно строго равно 𝐸0 только с том случае, если всё распределение вероятностей сосредо-
точено в одной точке, т. е. 𝜓 — собственный вектор с собственным числом 𝐸0.

На основе этой идее в предыдущем параграфе мы строим соответствующий вариационный принцип
(точный), а здесь, рассмотрим вариационный метод (приближённый) нахождения основного состояния.

Для этого мы рассматриваем семейство пробных функций 𝜓𝜆 = 𝜓𝜆1,...,𝜆𝑛
и ищем на них минимум

средней энергии для заданного гамильтониана:

𝐸0 ∼
< 𝐸(𝜆) = min

𝜆

⟨𝜓𝜆|𝐻̂|𝜓𝜆⟩
⟨𝜓𝜆|𝜓𝜆⟩

.
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Для вариационного принципа минимум брался по всем ненулевым векторам и получалось строгое ра-
венство. В вариационном методе берётся условный минимум по поверхности в пространстве состояний
заданной параметрически как 𝜓𝜆 = 𝜓𝜆1,...,𝜆𝑛

. Понятно, что условный минимум не может быть меньше
глобального, поэтому вариационный метод всегда даёт оценку сверху на энергию основного состояния.

Вариационный метод определяет наилучшее приближение к основному состоянию данного гамильто-
ниана на поверхности 𝜓𝜆1,...,𝜆𝑛 .

Для любого вектора состояния 𝜓𝜆 можно подобрать такой гамильтониан 𝐻̂𝜆, для которого 𝜓𝜆 будет
основным состоянием. Если параметры 𝜆min доставляют минимум функции 𝐸(𝜆), мы можем представить
исходный гамильтониан в виде

𝐻̂ = 𝐻̂𝜆min⏟  ⏞  
𝐻̂0

+(𝐻̂ − 𝐻̂𝜆min)⏟  ⏞  
𝑉

.

После чего воспользоваться теорией возмущения.
Пример1. Рассмотрим атом гелия в простейшем приближении, как два электрона в поле ядра, оттал-

кивающихся друг от друга по закону Кулона:

𝐻̂ =
p̂2
1

2𝑚
+

p̂2
2

2𝑚
− 2𝑒2

|r1|
− 2𝑒2

|r2|
+

𝑒2

|r1 − r2|
.

Ясно, что каждый электрон экранирует для другого часть заряда ядра, поэтому хочется рассмотреть
приближённый гамильтониан, в котором взаимодействие электронов друг с другом учтено изменением
эффективного заряда ядра (1 < 𝑍 < 2):

𝐻̂𝑍 =
p̂2
1

2𝑚
+

p̂2
2

2𝑚
− 𝑍𝑒2

|r1|
− 𝑍𝑒2

|r2|
.

Как подобрать оптимальную величину 𝑍? Для гамильтониан 𝐻̂𝑍 электроны не взаимодействуют друг с
другом. Спектр гамильтониан 𝐻̂𝑍 находится точно как сумма энергий двух электронах в водородоподоб-
ных ионах с зарядом ядра 𝑍𝑒. Нормированная двухэлектронная волновая функция основного состояния
гамильтониана 𝐻̂(𝑍)

𝜓𝑍(𝑟1, 𝑟2) =
𝑍3

𝜋𝑎3Б
exp

(︂
−𝑍 𝑟1 + 𝑟2

𝑎Б

)︂
, 𝑎Б =

ℏ2

𝑚𝑒2
,

Мы можем вычислить (аналитически)
𝐸(𝑍) = ⟨𝜓𝑍 |𝐻̂|𝜓𝑍⟩

и найти минимум 𝐸(𝑍). Значение 𝑍min доставляющее этот минимум — оптимальное значение 𝑍 (для
нахождения основного состояния, в других случаях оптимальное 𝑍 может быть другим).

𝐸(𝑍) =
𝑒2

𝑎Б

[︂
𝑍2 − 27

8
𝑍

]︂
, 𝐸′(𝑍min) =

𝑒2

𝑎Б

[︂
2𝑍min − 27

8

]︂
= 0 ⇒

⇒ 𝑍min =
27

16
= 1,6875, 𝐸(𝑍min) = − 𝑒2

𝑎Б

(︂
27

16

)︂2

= −2,84765625
𝑒2

𝑎Б
.

Так что для нахождения основного уровня энергии удобно представить гамильтониан атома гелия в сле-
дующем виде:

𝐻̂ =
p̂2
1

2𝑚
+

p̂2
2

2𝑚
−

27
16𝑒

2

|r1|
−

27
16𝑒

2

|r2|⏟  ⏞  
𝐻̂0

−
5
16𝑒

2

|r1|
−

5
16𝑒

2

|r2|
+

𝑒2

|r1 − r2|⏟  ⏞  
𝑉

Энергия 𝐸(𝑍min) = ⟨𝜓𝑍min
|𝐻̂0+𝑉 |𝜓𝑍min

⟩ при этом соответствует энергии основного состояния с точностью
до первого порядка теории возмущений. Второй порядок теории возмущений всегда даёт отрицательную
поправку к энергии основного состояния (см. (1.36)), что согласуется с тем, что вариационный метод
всегда даёт завышенную оценку основного уровня энергии2.

𝐸(𝑍 = 2) = − 11
4
𝑒2

𝑎Б
= −2,75 𝑒

2

𝑎Б
соответствует энергии основного состояния атома гелия с точностью до

первой поправки теории возмущений, которую мы получим, если отнесём к возмущению только взаимо-
действие между электронами:

𝐻̂ =
p̂2
1

2𝑚
+

p̂2
2

2𝑚
− 2𝑒2

|r1|
− 2𝑒2

|r2|⏟  ⏞  
𝐻̂0

+
𝑒2

|r1 − r2|⏟  ⏞  
𝑉

.

1См. задачу из задания.
2Кроме тех исключительных счастливых случаев, когда точная волновая функция попала в число пробных функций 𝜓𝜆.
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Видно, что такое разбиение гамильтониана на невозмущённую часть и возмущении хуже: оценка сверху
в −2,75 хуже, чем оценка сверху −2,84765625.

(!) Рассмотренный пример представляет собой простейший случай приближения среднего поля, когда
взаимодействие между частица заменяется взаимодействием с некоторым средним полем, вклад в которое
даёт каждая частица. Применительно в атому гелия мы могли бы сделать модель более точной, если бы
описывали среднее поле не кулоновским потенциалом −𝑍𝑒2

𝑟 , а более сложным потенциалом 𝑈(𝑟).

9.3 Атом гелия
Обсудим в первом порядке теории возмущений структуру уровней гелиеподобного атома.

𝐻̂ =
p̂2
1

2𝑚
− 𝑍𝑒2

𝑟1⏟  ⏞  
𝐻̂1

+
p̂2
1

2𝑚
− 𝑍𝑒2

𝑟2⏟  ⏞  
𝐻̂2⏟  ⏞  

𝐻̂0

+
𝑒2

|r1 − r2|⏟  ⏞  
𝑉

.

Мы не собираемся ограничиваться основным состоянием, поэтому приведённое выше вычисление эффек-
тивного заряда здесь не подходит, а вычислять свой эффективный заряд для каждого уровня — слишком
громоздко. Поэтому в этот раз мы разбили гамильтониан на невозмущённую часть 𝐻̂0 и возмущение 𝑉
самым простым образом, отнеся к возмущению только взаимодействие электронов между собой.

Гамильтонианы 𝐻̂1,2 — имеют вид гамильтониана водородоподобного атома, задачу на собственные
числа и собственные функции которого мы уже исследовали. Это позволяет выписать невозмущённые
волновые функции и уровни энергии:

𝐸(0)
𝑛1𝑛2

= −𝑍
2𝑚𝑒4

2ℏ2

(︂
1

𝑛1
+

1

𝑛2

)︂
= −𝑍

2𝑒2

2𝑎Б

(︂
1

𝑛1
+

1

𝑛2

)︂
, 𝑛1, 𝑛2 = 1, 2, 3, . . .

𝜓
(0)
𝑛1𝑙1𝑚𝑙1𝑚𝑠1;𝑛2𝑙2𝑚𝑙2𝑚𝑠2

(𝑟1, 𝜃1, 𝜑1,𝑚
𝑠
1; 𝑟2, 𝜃2, 𝜑2,𝑚

𝑠
2) = 𝜓𝑛1𝑙1𝑚𝑙1𝑚𝑠1

(𝑟1, 𝜃1, 𝜑1,𝑚
𝑠
1)𝜓𝑛2𝑙2𝑚𝑙2𝑚𝑠2

(𝑟2, 𝜃2, 𝜑2,𝑚
𝑠
2) =

= 𝜑𝑛1𝑙1𝑚𝑙1
(𝑟1, 𝜃1, 𝜑1)𝜒𝑚𝑠1

(𝑚𝑠
1)⏟  ⏞  

δ𝑚𝑠1𝑚𝑠
1

𝜑𝑛2𝑙2𝑚𝑙2
(𝑟2, 𝜃2, 𝜑2)𝜒𝑚𝑠2

(𝑚𝑠
2)⏟  ⏞  

δ𝑚𝑠2𝑚𝑠
2

.

Волновые функции 𝜓(0)
𝑛1𝑙1𝑚𝑙1𝑚𝑠1;𝑛2𝑙2𝑚𝑙2𝑚𝑠2

не обладают правильной перестановочной симметрией, поэтому
мы перейдём к другому базису невозмущённых состояний, при этом удобно представить волновую функ-
ции в виде произведения координатной и спиновой частей. Спиновые волновые функции выберем в виде
состояний с определённым суммарным спином 𝑆.

𝜓
(0)
𝑛1𝑙1𝑚𝑙1;𝑛2𝑙2𝑚𝑙2;𝑆,𝑀𝑆

= 𝐶
{︀
𝜑𝑛1𝑙1𝑚𝑙1

(r1)𝜑𝑛2𝑙2𝑚𝑙2
(r2) + (−1)𝑆𝜑𝑛2𝑙2𝑚𝑙2

(r1)𝜑𝑛1𝑙1𝑚𝑙1
(r2)

}︀
𝜒𝑆𝑀𝑆

.

Здесь 𝐶 — нормировочный множитель. 𝐶 = 1
2 если если координатные волновые функции двух электронов

совпадают (𝑛1 = 𝑛2, 𝑙1 = 𝑙2, 𝑚𝑙1 = 𝑚𝑙2, в этом случае допустимо только 𝑆 = 0), или 𝐶 = 1√
2

если
координатные волновые функции двух электронов различаются (в этом случае допустимы и 𝑆 = 0 и
𝑆 = 1).

Спиновая волновая функция 𝜒𝑆𝑀𝑆
(𝑚𝑠

1,𝑚
𝑠
2) симметрична по отношению к перестановки электронов

при 𝑆 = 1 и антисимметрична при 𝑆 = 0, т. е. спиновая чётность равна (−1)𝑆+1, поэтому чётность
координатной волновой функции определяется как (−1)𝑆 , чтобы общая чётность была −1.

Первая поправка к основному состоянию

𝐸
(1)
11 =

5

8

𝑍𝑒2

𝑎Б
.

Мы видим, что первая поправка мала по сравнению с невозмущённым уровнем энергии, хотя на хорошую
точность в первом порядке теории возмущений лучше не рассчитывать, но для качественных оценок
точность приемлема: ⃒⃒⃒⃒

⃒𝐸(1)
11

𝐸
(0)
11

⃒⃒⃒⃒
⃒ = 5

8𝑍
⩾

5

16
= 0,3125.

Уровни 𝐸(0)
𝑛1𝑛2 расщепляются за счёт обменного члена

𝐸
(1)
𝑛1𝑙1𝑚𝑙1𝑛2𝑙2𝑚𝑙2𝑆

= 𝐾 + (−1)𝑆𝐽
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Здесь первый член соответствует кулоновскому взаимодействию плотностей зарядов двух электронов (8.6)

𝐾 =

ˆ
𝜌1(r1)

𝑒2

|r1 − r2|
𝜌2(r2) > 0, (9.1)

а второй член — обменный (8.7) (присутствует только при 𝜑1 ̸= 𝜑2)

𝐽 =

ˆ
𝜑*1(r1)𝜑2(r1)⏟  ⏞  

𝜌обм.(r1)

𝑒2

|r1 − r2|
𝜑*2(r2)𝜑1(r2)⏟  ⏞  

𝜌*обм.(r2)

𝑑3r1𝑑
3r2 = (9.2)

=

ˆ
Re (𝜌обм.(r1))

𝑒2

|r1 − r2|
Re (𝜌обм.(r2)) 𝑑

3r1𝑑
3r2 +

+

ˆ
Im (𝜌обм.(r1))

𝑒2

|r1 − r2|
Im (𝜌обм.(r2)) 𝑑

3r1𝑑
3r2 > 0.

Таким образом, невозмущённые уровни энергии расщепляются по суммарному спину: состояния с
𝑆 = 0 получают большую добавку 𝐾 + 𝐽 (кроме случая 𝑛1 = 𝑛2, 𝑙1 = 𝑙2, 𝑚𝑙1 = 𝑚𝑙2, когда нет обменного
члена и поправка равна 𝐾), а состояния с 𝑆 = 1 меньшую поправку 𝐾 − 𝐽 .

(ф) Может показаться странным, что гамильтониан, не зависящий от спина даёт расщепление по спи-
ну, но на самом деле тут сказывается не сам спин, а перестановочная симметрия координатной волновой
функции.

(ф*) Если бы вместо двух электронов мы взяли две одинаковые, но не тождественные частицы, то
расщепление за счёт обменного члена всё равно имело бы место, но не было бы связано со спином (спин
только создавал бы дополнительное вырождение уровней энергии), и появились бы дополнительные уров-
ни энергии, для которых волновые функции были бы чётными по отношению к перестановки двух частиц
𝜓(𝜉1, 𝜉2) = +𝜓(𝜉2, 𝜉1).

9.4 Сложный атом

Выпишем гамильтониан сложного атома без учёта спина электронов и пренебрегая движением ядра:

𝐻̂ =
∑︁
𝑎

(︂
p̂2
𝑎

2𝑚
− 𝑍𝑒2

𝑟𝑎

)︂
+
∑︁
𝑎<𝑏

𝑒2

|r𝑎 − r𝑏|
.

Исследовать этот гамильтониан мы будем методом теории возмущений, а для выделения невозмущённого
гамильтониана используем метод среднего поля

𝐻̂ =
∑︁
𝑎

𝐻̂𝑎⏞  ⏟  (︂
p̂2
𝑎

2𝑚
− 𝑍𝑒2

𝑟𝑎
+ 𝜙(𝑟𝑎)

)︂
⏟  ⏞  

𝐻̂0=
∑︀

𝑎 𝐻̂𝑎

+

(︃∑︁
𝑎<𝑏

𝑒2

|r𝑎 − r𝑏|
−
∑︁
𝑎

𝜙(𝑟𝑎)

)︃
⏟  ⏞  

𝑉

. (9.3)

Среднее поле 𝜙(𝑟) мы считаем общим для всех электронов и сферически симметричным (для удобства
нахождения уровней). Подходящий потенциал среднего поля 𝜙(𝑟) можно искать с помощью вариационного
метода (возможно с применением численных методов), или другими способами.

9.4.1 Одноэлектронный базис (спектроскопические символы)

Все невозмущённые одночастичные гамильтонианы 𝐻̂𝑎 = 1̂ ⊗ · · · ⊗ 𝐻̂1ч ⊗ · · · ⊗ 1̂ устроены одинаково,
только действуют на степени свободы для разных электронов.

Спектральная задача для одночастичного гамильтониана 𝐻̂1ч — это обычная задача о движении ча-
стицы в центрально-симметричном поле. Уровни энергии нумеруются орбитальным квантовым числом 𝑙 и
радиальным квантовым числом (число внутренних нулей радиальной волновой функции) 𝑛𝑟. По магнит-
ному квантовому числу 𝑚𝑙 имеется (2𝑙+1)-кратное вырождение. Также 2-кратное вырождение имеется по
проекции спина 𝑚𝑠. Вместо радиального квантового числа традиционно используется главное квантовое
число 𝑛 = 𝑛𝑟+𝑙+1. Если среднее поле 𝜙(𝑟) ̸= const

𝑟 , то кулоновское вырождение по 𝑙 отсутствует и уровень
энергии зависит не только от 𝑛, но и от 𝑙.

𝐻̂1ч𝜓𝑛𝑙𝑚𝑙𝑚𝑠
= ℰ𝑛𝑙𝜓𝑛𝑙𝑚𝑙𝑚𝑠

.
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Рис. 9.1: Правило Клечковского

Волновая функция раскладывается на три множителя: радиальный, угловой и спиновый

𝜓𝑛𝑙𝑚𝑙𝑚𝑠
(𝑟, 𝜃, 𝜑,𝑚𝑠) = 𝑅𝑙𝑛(𝑟)𝑌𝑙𝑚(𝜃, 𝜑) 𝜒𝑚𝑠

(𝑚𝑠)⏟  ⏞  
δ𝑚𝑠𝑚𝑠

. (9.4)

(О) Все одночастичные состояния с заданными 𝑛, 𝑙 называют электронной оболочкой.
В электронной оболочке 𝑛, 𝑙 имеется 2(2𝑙 + 1) электронное состояние. В соответствии с принципом

запрета Паули 2(2𝑙+1) — максимальное число электронов, которые могут находиться на данной оболочке.
(О) Если на данной оболочке имеется максимальное число электронов, то она называется замкнутой

оболочкой.
Электронные оболочки принято обозначать спектроскопическими символами, где 𝑛 обозначается чис-

лом, а 𝑙 — буковой:
𝑙 0 1 2 3 . . .

символ 𝑠 𝑝 𝑑 𝑓 далее по алфавиту

Например, 2𝑠 — 𝑛 = 2, 𝑙 = 0,
3𝑝 — 𝑛 = 3, 𝑙 = 1,
1𝑝 — такой символ невозможен, т. к. 𝑝 означает 𝑙 = 1, а значит 𝑛 = 𝑛𝑟 + 𝑙 + 1 ⩾ 2.

9.4.2 Периодический закон**
Для атома водорода энергия электрона нумеруется главным квантовым числом 𝑛 = 𝑛𝑟 + 𝑙 + 1. Для

сложного атома это не так из-за взаимодействия электронов между собой.
(!) Для сложного атома энергия электрона лучше нумеруются суммой 𝑁 = 𝑛 + 𝑙 = 𝑛𝑟 + 2𝑙 + 1.

При равном значении 𝑁 = 𝑛 + 𝑙 меньшую энергию имеет состояние с меньшим 𝑛 (см. рис. 9.1). Это
приближённое правило называется правилом Клечковского (преимущественно в русской и французской
литературе, а также правилом Маделунга, правилом 𝑛+ 𝑙, диагональным правилом и т. д.).

Правило Клечковского много раз получалось разными физиками и химиками. Оно было впервые
сформулировано Нильсом Бором в начале 1920-х. В. М. Клечковский3 вывел правило из модели Томаса–
Ферми4 в 1951 году.

(!) Спор о том, как правильно называть правило 𝑛 + 𝑙 имеет простое решение. Правильное название
— периодический закон Д. И. Менделеева в терминах квантовой механики. 𝑁 = 𝑛+ 𝑙 — это почти номер
длинного периода в таблице Менделеева. Точнее номер периода для 𝑙 = 0 равен 𝑁 = 𝑛, а для остальных
орбитальных моментов — 𝑁 − 1.

В 1971 году Ю. Н. Демков и В. Н. Островский получили правило Клечковского из модельного по-
тенциала, который на малых расстояниях от ядра близок к кулоновскому, а на больших расстояниях
учитывает взаимодействие электронов:

𝑈1/2(𝑟) = − 2𝑣

𝑟𝑅(𝑟 +𝑅)2
, 𝑣 = const, 𝑅 = const.

Снова речь идёт о разновидностях приближения среднего поля.
3Всеволод Маврикиевич Клечковский (1900–1972). Советский агрохимик. Основное направление исследований — приме-

нение метода меченых атомов.
4Квазиклассическая модель, рассматривающая электроны в атоме как Ферми-жидкость. Может рассматриваться как

разновидность приближения среднего поля.
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На основе правила Клечковского рисуют схемы, где разным одноэлектронным состояниям соответству-
ют клеточки (или полочки-уровни), в которые можно помещать стрелки ↑ и ↓, изображающие электроны
со спином направленным вверх или вниз (см. рис. 9.2).

На приведённой на рис. 9.2 энергетической диаграмме каждой клеточке соответствуют два одно-
электронных состояния отличающиеся направлением спина. При заданных 𝑛 и 𝑙 клеточки нумеруются
магнитным квантовым числом 𝑚𝑙 в порядке убывания:

1 0 −1

2𝑝

𝑚𝑙 :

↑

Один электрон на 2𝑝-оболочке, 𝑚𝑠 = + 1
2 , 𝑚𝑙 = +1

Правило Клечковского является приближённым. Это связано с тем, что при добавлении очередного
электрона потенциал среднего поля перестраивается и не всегда при этом сохраняется порядок уров-
ней. Поэтому из правила Клечковского есть ряд исключений, когда при переходе к следующему атому
в таблице Менделеева ранее заполненные одноэлектронные состояния освобождаются. Эти сравнительно
небольшие перестройки распределения электронов по оболочкам влияют на химические свойства элемен-
тов не сильно и структуру таблицы Менделеева не нарушают (см. рис. 9.3).

9.4.3 Базис-1 (конфигурации)
Многочастичные волновые функции нулевого приближения обладающие правильной перестановочной

симметрией задаются в форме определителя Слэтера (8.3)

𝜓
(0)
[𝑘1𝑘2...𝑘𝑁 ](𝜉1, 𝜉2, . . . , 𝜉𝑁 ) =

1√
𝑁 !

det

⎛⎜⎜⎜⎝
𝜓𝑘1(𝜉1) 𝜓𝑘2(𝜉1) . . . 𝜓𝑘𝑁 (𝜉1)
𝜓𝑘1(𝜉2) 𝜓𝑘2(𝜉2) . . . 𝜓𝑘𝑁 (𝜉2)

...
...

. . .
...

𝜓𝑘1(𝜉𝑁 ) 𝜓𝑘2(𝜉𝑁 ) . . . 𝜓𝑘𝑁 (𝜉𝑁 )

⎞⎟⎟⎟⎠ , 𝑘𝑎 = (𝑛𝑎, 𝑙𝑎,𝑚𝑙𝑎,𝑚𝑠𝑎).

(9.5)
В наборе состояний 𝑘1, 𝑘2, . . . , 𝑘𝑁 нет двух одинаковых, иначе определитель обращается в нуль.

(О) Электронной конфигурацией называют совокупность спектроскопических символов, задающих
распределение электронов по оболочкам. Символы принято перечислять в порядке возрастания 𝑛, а при
заданном 𝑛 в порядке возрастания 𝑙, если символы повторяются, то это обозначают как степень. Например,
следующая конфигурация соответствует основному состоянию натрия (см. рис. 9.4)

𝛾 = 1𝑠22𝑠22𝑝63𝑠.

Здесь 1𝑠2 — 2 𝑠-электрона (𝑙 = 0) при 𝑛 = 1 (замкнутая оболочка),
2𝑠2 — 2 𝑠-электрона (𝑙 = 0) при 𝑛 = 2 (замкнутая оболочка),
2𝑝6 — 6 𝑝-электронов (𝑙 = 1) при 𝑛 = 2 (замкнутая оболочка),
3𝑠 — 1 𝑠-электрон (𝑙 = 0) при 𝑛 = 3 (незамкнутая оболочка, валентный электрон).
Полное число электронов: 2 + 2 + 6 + 1 = 11.

Волновая функция вида (9.5) задаётся электронной конфигурацией 𝛾 (все 𝑛𝑎, 𝑙𝑎) и проекциями орби-
тальных и спиновых моментов:

|𝜓(0)
[𝑘1𝑘2...𝑘𝑁 ]⟩ = |𝛾;𝑚𝑙1,𝑚𝑠1;𝑚𝑙2,𝑚𝑠2; . . . ;𝑚𝑙𝑁 ,𝑚𝑠𝑁 ⟩. (9.6)

Такие волновые функции образуют Базис-1.
(*) Каждому базисному вектору из Базиса-1 соответствует некоторый набор стрелок (см., например,

рис. 9.4), расставленных в клетки диаграммы 9.2. Если вспомнить фермионное пространство Фока, то
каждой клетке диаграммы соответствуют два числа заполнения. Число заполнения равно 1, если в соот-
ветствующей клетке стоит стрелка с соответствующей ориентацией, или 0, если в соответствующей клетке
нет такой стрелки.

Волновая функция (9.5) является собственной для гамильтониана 𝐻̂0 с энергией

𝐸(0)
𝛾 = 𝐸

(0)
𝑘1𝑘2...𝑘𝑁

=

𝑁∑︁
𝑎=1

ℰ𝑘𝑎 =

𝑁∑︁
𝑎=1

ℰ𝑛𝑎𝑙𝑎 .

Большинство таких уровней энергии оказываются вырожденными по 𝑚𝑙𝑎,𝑚𝑠𝑎, за исключением конфи-
гураций в которых все непустые электронные оболочки замкнуты.

(!) В силу сферической симметрии замкнутая оболочка даёт нулевой вклад в полный спин и в полный
орбитальный момент.
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Рис. 9.2: Диаграмма одноэлектронных состояний. Масштаб по энергии не соблюдён, важен лишь порядок. Если
отразить диаграмму по вертикали и удвоить каждую клетку, то в этой диаграмме можно узнать таблицу Менде-
леева
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Рис. 9.3: Таблица Менделеева с указанием последней заполняемой оболочки. Сравните с рис. 9.2. Буква “о” в
виде правого верхнего индекса спектрального терма означает, что состояние нечётно, т. е. (−1)

∑︀
𝑎 𝑙𝑎 = −1
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2𝑝 ↑↓ ↑↓ ↑↓
2𝑠 ↑↓

1𝑠 ↑↓

3𝑠 ↑
2𝑝 ↑↓ ↑↓ ↑↓

2𝑠 ↑↓
1𝑠 ↑↓

3𝑠 ↓

Рис. 9.4: Две диаграммы, соответствующие двум векторам Базиса-1 для электронной конфигурации основного
состояния натрия 𝛾 = 1𝑠22𝑠22𝑝63𝑠

Подпространство собственных состояний гамильтониана 𝐻̂0 с энергией 𝐸(0)
𝛾 мы будем обозначать ℋ𝛾 .

Оно натянуто на состояния Базиса-1 (9.6) с фиксированной электронной конфигурацией 𝛾.
Для построения теории возмущений с вырожденными невозмущёнными уровнями энергиями нам надо

в первую очередь определить правильные волновые функции нулевого приближения (см. § 1.3 «Вырож-
денный спектр»).

Возмущение 𝑉 частично снимет вырождение спектра невозмущённого гамильтониана 𝐻̂0, но некото-
рое вырождение (связанное с симметриями полного гамильтониана 𝐻̂ = 𝐻̂0 + 𝑉 ) останется5.

9.4.4 Базис-2 (термы)
Базис-1 симметричен по отношению к поворотам координатных и спиновых волновых степеней свободы

отдельных электронов. Он одновременно диагонализует операторы l̂2𝑎, 𝑙̂𝑧𝑎, ŝ2𝑎, 𝑠𝑧𝑎, которые коммутируют
с 𝐻̂0 и между собой.

Возмущение 𝑉 (9.3) частично нарушает эти симметрии. Оно позволяет по-отдельность вращать спи-
новые степени свободы отдельных электронов, но координатные степени свободы теперь можно вращать
только все вместе. Генераторами вращений всех координатных степеней свободы являются проекции сум-
марного орбитального момента

L̂ =
∑︁
𝑎

l̂𝑎.

Соответствующие коммутирующие с 𝐻̂ = 𝐻̂0+𝑉 наблюдаемые — L̂2 и 𝐿̂𝑧, их собственные числа 𝐿(𝐿+1)
и 𝑀𝐿 ∈ {−𝐿,−𝐿+ 1, . . . ,+𝐿}.

Рассматриваемый гамильтониан не действует на спиновые степени свободы, но при перестановочная
симметрия координатной волновой функций связана с перестановочной симметрией спиновой волновой
функции, поэтому для спина также переходят к суммарному моменту:

Ŝ =
∑︁
𝑎

Ŝ𝑎.

Соответствующие коммутирующие с 𝐻̂ = 𝐻̂0 +𝑉 наблюдаемые — Ŝ2 и 𝑆𝑧, их собственные числа 𝑆(𝑆+1)
и 𝑀𝑆 ∈ {−𝑆,−𝑆 + 1, . . . ,+𝑆}.

(О) Операторы L̂2, 𝐿̂𝑧, Ŝ2, 𝑆𝑧 диагонализуются в новом базисе, который назовём Базисом-2 :

|𝛾;𝐿,𝑀𝐿;𝑆,𝑀𝑆⟩

Возмущение (9.3) в Базисе-2 оказывается диагональным.
Возмущение 𝑉 частично снимает вырождение уровней 𝐸(0)

𝛾 , но остаётся вырождение связанное с сим-
метрией суммарного гамильтониана по отношению к одновременному повороту всех координатных сте-
пеней свободы (вырождение по 𝑀𝐿) и вырождение, связанное с симметрией по отношению к одновремен-
ному повороту всех спиновых степеней свободы (вырождение по 𝑀𝑆). Общее вырождение оказывается
(2𝐿+ 1)(2𝑆 + 1)-кратным.

С точностью до первого порядка теории возмущений

𝐸𝛾𝐿𝑆 = 𝐸(0)
𝛾 + 𝐸

(1)
𝛾𝐿𝑆 .

𝐸
(1)
𝛾𝐿𝑆 = ⟨𝛾;𝐿,𝑀𝐿;𝑆,𝑀𝑆 |𝑉 |𝛾;𝐿,𝑀𝐿;𝑆,𝑀𝑆⟩.

Такие образом, подпространство ℋ𝛾𝐿𝑆 собственных векторов гамильтониана6 𝐻̂ = 𝐻̂0 + 𝑉 имеет раз-
мерность (2𝐿+ 1)(2𝑆 + 1).

5В дальнейшем к возмущению 𝑉 из (9.3) мы будем добавлять другие возмущения. Это будут члены, которыми мы
первоначально пренебрегли, а также члены связанные с внешними полями.

6Этот гамильтониан всё ещё нельзя считать полным, поскольку он не учитывает спин-орбитальное взаимодействие, дар-
виновский член, релятивистскую поправку к кинетической энергии, спин-спиновое взаимодействие и другие релятивистские
эффекты.
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(О) Каждому подпространству ℋ𝛾𝐿𝑆 сопоставляется спектроскопический терм. Терм обозначается
2𝑆+1𝐿, где 𝐿 — спектроскопический символ, обозначающий суммарный орбитальный момент 𝐿, который
в этом случае обозначает большой буквой:

𝐿 0 1 2 3 . . .
символ 𝑆 𝑃 𝐷 𝐹 далее по алфавиту

Если все непустые оболочки полностью замкнуты, то автоматически кратность 𝐸
(0)
𝛾 равна 1, а значит

𝑆 = 𝐿 = 0 и есть единственный терм 1𝑆. Поэтому при построении термов на замкнутые оболочки можно
не обращать внимание: они не вносят вклад ни в 𝐿, ни в 𝑆. По этой причине при записи электронной
конфигурации полностью замкнутые оболочки часто опускают.

Примеры термов.
1) Рассмотрим конфигурации 𝑛1𝑝 𝑛2𝑝 (𝑛1 ̸= 𝑛2). Соответствующая кратность 6× 6 = 36. Два 𝑝-электрона
на разных оболочках друг друг не мешают7, так что спиновый и орбитальный моменты складываются
независимо. 𝑆 пробегает значения 0, 1, а 𝐿 пробегает значения 0, 1, 2. Получается 6 термов:

1𝑆⏟ ⏞ 
1

, 3𝑆⏟ ⏞ 
3

, 1𝑃⏟ ⏞ 
3

, 3𝑃⏟ ⏞ 
3×3=9

, 1𝐷⏟ ⏞ 
5

, 3𝐷⏟ ⏞ 
3×5=15

.

Суммарная кратность 1 + 3 + 3 + 9 + 5 + 15 = 36 по-прежнему равна 36, значит выбранных квантовых
чисел достаточно для нумерации базисных состояний.
2) Рассмотрим конфигурации 𝑛𝑝2. Два 𝑝-электрона на одной оболочке. На оболочке имеется 6 состояний,
в каждом из которых не может быть больше 1 электрона. Соответствующая кратность 𝐶2

6 = 15. Так что
чётности орбитального и спинового моментов должны совпадать8 и возможны только 3 терма:

1𝑆⏟ ⏞ 
1

, 3𝑃⏟ ⏞ 
3×3=9

, 1𝐷⏟ ⏞ 
5

.

Суммарная кратность 1 + 9 + 5 = 15 по-прежнему равна 15, значит выбранных квантовых чисел
достаточно для нумерации базисных состояний.

9.4.5 Правила Хунда 1, 2
Пусть имеется некоторая электронная конфигурация 𝛾, которой соответствуют несколько термов, ну-

меруемых значениями 𝐿 и 𝑆. Для определения терма с минимальной энергией служат первое и второе
правила Хунда:

1) Минимальной энергией обладает терм с максимальным 𝑆;
2) среди таких термов терм с максимальным 𝐿.

Условия применимости.

• Эти правила не являются строгими и работают не всегда!

• Лучше всего правила Хунда работают для определения основного состояния атома.

– В этом случае имеется ряд замкнутых электронных оболочек и одна частично заполненная,
которая и даёт вклад в 𝐿 и 𝑆

– В этом случае они выполняются для первой половины таблицы Менделеева.

• Иногда правила Хунда работают для возбуждённых состояний, но это не надёжно.

• Иногда правила Хунда позволяют не только выделить терм с минимальной энергией, но и упорядо-
чить по энергии другие термы с той же конфигурацией (сначала по убыванию 𝑆, потом по убыванию
𝐿).

7Одноэлектронная волновая функция раскладывается на три множителя, зависящих от 𝑟, от углов 𝜃, 𝜑 и от спиновой
переменной 𝑚𝑠. Для двухчастичной волновой функции спиновая часть имеет перестановочную чётность (−1)𝑆+1, угловая
часть перестановочную чётность (−1)𝐿 (см. главу 4 «Сложение моментов»), а радиальная часть имеет перестановочную
чётность (−1)𝑆+𝐿 (чтобы общая перестановочная чётность получилась −1, как полагается для фермионов).

8Одноэлектронная волновая функция раскладывается на три множителя, зависящих от 𝑟, от углов 𝜃, 𝜑 и от спиновой
переменной 𝑚𝑠. Для двухчастичной волновой функции спиновая часть имеет перестановочную чётность (−1)𝑆+1, угловая
часть перестановочную чётность (−1)𝐿 (см. главу 4 «Сложение моментов»), а радиальная часть (поскольку для обоих
электронов совпадают 𝑛 и 𝑙 и радиальная часть одночастичных волновых функций одинакова) имеет перестановочную
чётность +1. Чтобы общая перестановочная чётность получилась −1, как полагается для фермионов, 𝑆 и 𝐿 должны иметь
одинаковую чётность.
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Дадим его примерное (нестрогое обоснование).
1) Если координатная часть волновой функции антисимметрична, то волновая функция обращается в

нуль при совпадении координат электронов. Поскольку электроны взаимно отталкиваются это понижает
их потенциальную энергию. Если координатная волновая функция симметрична, то волновая функция
при совпадении координат электронов в нуль не обращается, что повышает их потенциальную энергию.
Чтобы минимизировать потенциальную энергию надо, чтобы как можно больше электронов имели оди-
наковые проекции спина, т. е. чтобы 𝑆 было максимальным. Можно сказать, что электроны должны как
можно меньше различаться по спину, чтобы как можно больше различаться по координатам.

2) После максимизации 𝑆 надо максимизировать 𝐿. Этому дадим полуклассическое объяснение. Если
электроны вращаются вокруг ядра в разные стороны, то они периодически сближаются, что увеличивает
их среднюю потенциальную энергию, поэтому электронам энергетически выгодно вращаться вокруг
ядра в одну сторону, чтобы реже встречаться9, т. е. максимизировать орбитальный момент.

Примеры применения правил Хунда.
1) Рассмотрим конфигурации 𝑛1𝑝 𝑛2𝑝 (𝑛1 ̸= 𝑛2). Эта конфигурация соответствует возбуждённому
состоянию атома, так что правила Хунда применяются без гарантий правильности. Как мы уже
выяснили, для данной конфигурации имеется 6 термов:

1𝑆, 3𝑆, 1𝑃, 3𝑃, 1𝐷, 3𝐷.

Максимальный спин равен 1, при спине 1 максимальный орбитальный момента равен 2, что соответствует
терму 3𝐷, который имеет наименьшую энергию.

𝑛1𝑝 ↑
𝑛2𝑝 ↑

Диаграмма для терма 𝑛1𝑝 𝑛2𝑝(3𝐷)

2) Рассмотрим конфигурации 𝑛𝑝2. Если все нижележащие электронные оболочки заполнены и атом
относится к первой половине таблицы Менделеева, то правила Хунда работают. В противном случае
они применяются без гарантий правильности. Как мы уже выяснили, для данной конфигурации имеется
3 терма:

1𝑆, 3𝑃, 1𝐷.

Максимальный спин равен 1. Уже это условие фиксирует как состояние с низшей энергией терм 3𝑃 .

𝑛𝑝 ↑ ↑

Диаграмма для терма 𝑛𝑝2(3𝑃 )

(?*) Диаграммы, которыми мы проиллюстрировали правила Хунда соответствуют некоторым векто-
рам Базиса-1. Однако правила Хунда имеют дело с Базисом-2. Кроме того, при построении диаграмм
мы максимизировали не суммарный спин и суммарный орбитальный момент, а их проекции. Насколько
построение таких диаграмм при применении правил Хунда корректно и как согласуется с использованием
двух разных базисов? На самом деле в Базисе-1 и Базисе-2 есть общие векторы. И это как раз те векторы,
для которых проекции суммарного спина и орбитального момента максимальны и минимальны (вспоми-
наем сложение моментов). Эти состояния обнуляются под действием операторов 𝑆+ и 𝐿̂+ (или операторов
𝑆− и 𝐿̂−) что гарантирует выполнение равенств 𝑀𝑆 = 𝑆 и 𝑀𝐿 = 𝐿 (или 𝑀𝑆 = −𝑆 и 𝑀𝐿 = −𝐿). Из всех
(2𝑆 + 1)(2𝐿+ 1) векторов Базиса-2, относящихся к искомому терму, в Базис-1 попадает не более 4-х век-
торов (у которых 𝑀𝐿 = ±𝐿 и 𝑀𝑆 = ±𝑆), остальные базисные векторы искомого терма выражаются
из Базиса-1 с помощью некоторых линейных комбинаций. Но для определения 𝑆 и 𝐿, удовлетворяющих
правилам Хунда нам не надо выходить за пределы Базиса-1.

9.4.6 Базис-3 (тонкая структура термов)
Тонкая структура атомных спектров связана с релятивистскими поправками к гамильтониану Паули

(7.36), которые мы выводили из уравнения Дирака:

𝑉тонк.стр. =
∑︁
𝑎

− p̂4
𝑎

8𝑚3𝑐2⏟  ⏞  
поправка к кин.энергии

+
∑︁
𝑎

𝜙′(𝑟𝑎)ℏ
2𝑚𝑐𝑟𝑎

(︁
𝜇̂𝑎,

ˆ⃗
𝑙𝑎

)︁
⏟  ⏞  

спин-орбитальное взаимодействие

+
∑︁
𝑎

−𝑒ℏ
2△𝜙(𝑟𝑎)
8𝑚2𝑐2⏟  ⏞  

дарвиновский член

, 𝜇̂𝑎 = −2
𝑒ℏ
2𝑚𝑐⏟ ⏞ 
𝜇Б

ŝ𝑎. (9.7)

9Разумеется, в стационарном квантовом состоянии плотность вероятности от времени не зависит, но корреляции между
положениями электронов имеются и в квантовой механике.
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Эти поправки мы добавляем к возмущению 𝑉 в уравнении (9.3).
Поправка к кинетической энергии и дарвиновский член действуют только на координатные степени

свободы. Поскольку они сферические-симметричны Базис-2 для них даёт правильные волновые функции
нулевого порядка.

Спин-орбитальное взаимодействие создаёт взаимодействие между координатными и спиновыми степе-
нями свободы. Поскольку оно сферически-симметрично полный момент импульса Ĵ = L̂+ Ŝ по-прежнему
сохраняется, но орбитальный и спиновый моменты по отдельности уже не сохраняются (не коммутируют
с гамильтонианом).

Чтобы получить правильные волновые функции нулевого приближения для спин-орбитального взаи-
модействия нам надо ещё раз сменить базис, воспользовавшись результатами главы 4 «Сложение момен-
тов».

Операторы L̂2, Ŝ2, Ĵ2 и 𝐽𝑧 диагонализуются в новом базисе, который мы назовём Базисом-3 :

|𝛾;𝐿, 𝑆; 𝐽,𝑀𝐽⟩

Возмущения (9.3) и (9.7) в Базисе-3 оказываются диагональными.
Возмущение 𝑉тонк.стр. частично снимает вырождение уровней 𝐸𝛾𝐿𝑆 , но остаётся вырождение связанное

с симметрией суммарного гамильтониана по отношению к одновременному повороту всех (координатных
и спиновых) степеней свободы (вырождение по 𝑀𝐽). Выражение оказывается (2𝐽 + 1)-кратным.

С точностью до первого порядка теории возмущений

𝐸𝛾𝐿𝑆𝐽 = 𝐸(0)
𝛾 + 𝐸

(1)
𝛾𝐿𝑆 + 𝐸

(1)
𝛾𝑆𝐿𝐽 .

𝐸
(1)
𝛾𝐿𝑆𝐽 = ⟨𝛾;𝐿, 𝑆; 𝐽,𝑀𝐽 |𝑉тонк.стр.|𝛾;𝐿, 𝑆; 𝐽,𝑀𝐽⟩.

Таким образом подпространство ℋ𝛾𝐿𝑆𝐽 собственных векторов гамильтониана 𝐻̂0+𝑉 +𝑉тонк.стр. имеет
размерность (2𝐽 + 1).

(О) Каждому подпространству ℋ𝛾𝐿𝑆 сопоставляется спектроскопический терм с учётом тонкой
структуры. Терм обозначается 2𝑆+1𝐿𝐽 , где 𝐿 — спектроскопический символ, обозначающий суммарный
орбитальный момент 𝐿, а 𝐽 — число, обозначающее суммарный момент импульса.

Примеры термов с учётом тонкой структуры.
1) Рассмотрим конфигурации 𝑛1𝑝 𝑛2𝑝 (𝑛1 ̸= 𝑛2). Соответствующая кратность 6 × 6 = 36. Ранее мы
получили 6 термов:

1𝑆⏟ ⏞ 
1

, 3𝑆⏟ ⏞ 
3

, 1𝑃⏟ ⏞ 
3

, 3𝑃⏟ ⏞ 
3×3=9

, 1𝐷⏟ ⏞ 
5

, 3𝐷⏟ ⏞ 
3×5=15

.

Теперь часть их этих термов расщепляются:

1𝑆0⏟ ⏞ 
1

, 3𝑆1⏟ ⏞ 
3

, 1𝑃1⏟ ⏞ 
3

, 3𝑃0⏟ ⏞ 
1

, 3𝑃1⏟ ⏞ 
3

, 3𝑃2⏟ ⏞ 
5

,

⏟  ⏞  
3𝑃 — кратность 9

1𝐷2⏟ ⏞ 
5

, 3𝐷1⏟ ⏞ 
3

, 3𝐷2⏟ ⏞ 
5

, 3𝐷3⏟ ⏞ 
7

.

⏟  ⏞  
3𝐷 — кратность 15

2) Рассмотрим конфигурации 𝑛𝑝2. Соответствующая кратность 𝐶2
6 = 15. Ранее мы получили 3 терма:

1𝑆⏟ ⏞ 
1

, 3𝑃⏟ ⏞ 
3×3=9

, 1𝐷⏟ ⏞ 
5

.

Теперь часть из этих термов расщепляются:

1𝑆0⏟ ⏞ 
1

, 3𝑃0⏟ ⏞ 
1

, 3𝑃1⏟ ⏞ 
3

, 3𝑃2⏟ ⏞ 
5

,

⏟  ⏞  
3𝑃 — кратность 9

1𝐷2⏟ ⏞ 
5

.

Рассмотрим спин-орбитальное взаимодействие в подпространстве ℋ𝛾𝐿𝑆 .

𝑉сп.орб. =
∑︁
𝑎

−2
𝑒ℏ
2𝑚𝑐

𝜙′(𝑟𝑎)ℏ
2𝑚𝑐𝑟𝑎

(︁
ŝ𝑎,

ˆ⃗
𝑙𝑎

)︁
(9.8)

В подпространстве ℋ𝛾𝐿𝑆 базисные векторы нумеруются двумя квантовыми числами: 𝑀𝐿 и 𝑀𝑆 .
Все операторы орбитальных моментов действуют только на орбитальные переменные, т. е. перемеши-

вают состояния с одинаковыми 𝑀𝑆 и разными 𝑀𝐿. Для разных 𝑀𝐿 эти операторы действуют одинаково.
Для таким операторов пространство ℋ𝛾𝐿𝑆 разбивается на 2𝑆 +1 инвариантное подпространство, каждое
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из которых имеет размерность 2𝐿+1. В этих (2𝐿+1)-мерных инвариантных подпространствах нет нетри-
виальных (отличных от нуль-мерных и (2𝐿 + 1)-мерных) инвариантных подпространств, что означает,
что все l̂𝑎 реализуют в них одно и то же неприводимое представление группы вращений10, а значит все
операторы l̂𝑎 и оператор L̂ пропорциональны друг другу:

l̂𝑎 = 𝑐𝑎L̂,
∑︁
𝑎

𝑐𝑎 = 1.

Все спиновые операторы действуют только на спиновые переменные, т. е. перемешивают состояния
с одинаковыми 𝑀𝐿 и разными 𝑀𝑆 . Для разных 𝑀𝑆 эти операторы действуют одинаково. Для таким
операторов пространство ℋ𝛾𝐿𝑆 разбивается на 2𝐿+1 инвариантное подпространство, каждое из которых
имеет размерность 2𝑆 + 1. В этих (2𝑆 + 1)-мерных инвариантных подпространствах нет нетривиальных
(отличных от нуль-мерных и (2𝑆 + 1)-мерных) инвариантных подпространств, что означает, что все ŝ𝑎
реализуют в них одно и то же неприводимое представление группы вращений11, а значит все операторы
ŝ𝑎 и оператор Ŝ пропорциональны друг другу:

ŝ𝑎 = 𝑐′𝑎Ŝ,
∑︁
𝑎

𝑐′𝑎 = 1.

Таким образом, в подпространстве ℋ𝛾𝐿𝑆 в подпространстве ℋ𝛾𝐿𝑆 спин-орбитальное взаимодействие
имеет вид

𝑉сп.орб. = 𝛼𝛾𝐿𝑆 ·
(︁
Ŝ, L̂

)︁
= 𝛼𝛾𝐿𝑆

(Ŝ+ L̂)2 − L̂2 − Ŝ2

2
= 𝛼𝛾𝐿𝑆

𝐽(𝐽 + 1)− 𝐿(𝐿+ 1)− 𝑆(𝑆 + 1)

2
. (9.9)

Мы видим, что оно, как и должно быть, оказывается диагональным в Базисе-3, причём не зависит от
квантового числа 𝑀𝐽 .

9.4.7 Правило Ланде (правило Хунда 3)
Пусть имеется некоторый терм 𝛾𝐿𝑆, в котором есть только одна частично заполненная электронная

оболочка, которой с учётом тонкой структуры расщепляется на несколько термов, нумеруемых значениями
𝐽 .

𝛿𝐸сп.орб. = 𝛼𝛾𝐿𝑆
𝐽(𝐽 + 1)− 𝐿(𝐿+ 1)− 𝑆(𝑆 + 1)

2
.

Мы видим, что для определения терма с минимальной энергии надо определить знак параметра 𝛼𝛾𝐿𝑆 .
Из уравнения (9.8) видно, что для одного электрона на оболочке 𝛼𝛾𝐿𝑆 > 0. Если на оболочке имеется

одна дырка, то для неё 𝛼𝛾𝐿𝑆 < 0. Также при переходе от 𝑘 электронов на оболочке к 𝑘 дыркам 𝛼𝛾𝐿𝑆
должно менять знак.

Для определения терма с минимальной энергией служит правило Ланде (третье правило Хунда):

• Если оболочка заполнена менее чем на половину, то 𝛼𝛾𝐿𝑆 > 0 и 𝐽 = |𝐿− 𝑆|.

• Если оболочка заполнена более чем на половину, то 𝛼𝛾𝐿𝑆 < 0 и 𝐽 = 𝐿+ 𝑆.

• Если оболочка заполнена ровна на половину, то 𝛼𝛾𝐿𝑆 = 0, 𝐿 = 0 и 𝐽 = 𝑆 = 2𝑙+1
2 .

Условия применимости.

• Правило Ланде не являются строгим и работает не всегда!

• Правило Ланде лучше всего работает для определения основного состояния атома.

• Правило Ланде позволяют не только выделить терм с минимальной энергией, но и упорядочить по
энергии другие термы с теми же 𝐿 и 𝑆.

Примеры применения правила Ланде (третьего правила Хунда).
1) Рассмотрим конфигурации 𝑛1𝑝 𝑛2𝑝 (𝑛1 ̸= 𝑛2). Правило Ланде неприменимо, поскольку имеется две
частично заполненных оболочки.
2) Рассмотрим конфигурации 𝑛𝑝2. Соответствующая кратность 𝐶2

6 = 15. Ранее мы получили следующие
термы:

1𝑆0⏟ ⏞ 
1

, 3𝑃0⏟ ⏞ 
1

, 3𝑃1⏟ ⏞ 
3

, 3𝑃2⏟ ⏞ 
5

,

⏟  ⏞  
3𝑃 — кратность 9

1𝐷2⏟ ⏞ 
5

.

Правила Хунда дали терм 3𝑃 . Оболочка заполнена менее чем на половину, так что 𝐽 = |1 − 1| = 0.
Наинизшую энергию имеет терм 3𝑃0.

10Здесь мы ссылаемся на результат из теории представлений группы вращений SO(3).
11Здесь мы ссылаемся на результат из теории представлений квантовой группы вращений SU(2).
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9.5 Атом во внешнем магнитном поле
Гамильтониан для системы электронов в центральном потенциале во внешнем магнитном поле имеет

вид

𝐻̂ =
∑︁
𝑎

(︃
(P̂𝑎 +

𝑒
𝑐A(r𝑎))

2𝑚
+ 𝑈(𝑟𝑎) + 2

𝑒ℏ
2𝑚𝑐

(︁
ŝ𝑎,B(r𝑎)

)︁)︃
+
∑︁
𝑎<𝑏

𝑒2

|r𝑎 − r𝑏|
.

Во многих случаях внешнее магнитное поле на атомных масштабах можно считать однородным и посто-
янным. Для описания такого поля введём векторный потенциал в виде

A(r) = 1
2 [B× r]

Теперь гамильтониан можно переписать в виде

𝐻̂ =
∑︁
𝑎

P̂2
𝑎

2𝑚
+ 𝑈(r1, . . . , r𝑁 ) +

∑︁
𝑎

(︃
𝑒2

8𝑚𝑐2
[B× r]2 +

𝑒

2𝑚𝑐
(P𝑎, [B× r])⏟  ⏞  (︀
B,[r×P𝑎]⏟  ⏞  

ℏ̂l𝑎

)︀+2
𝑒ℏ
2𝑚𝑐

(︁
ŝ𝑎,B

)︁)︃
.

Здесь 𝑈(r1, . . . , r𝑁 ) обозначает все электростатические взаимодействия электронов, как с ядром, так и
друг с другом.

Ось 𝑧 удобно направить вдоль магнитного поля, тогда получаем

𝐻̂ =
∑︁
𝑎

P̂2
𝑎

2𝑚
+ 𝑈(r1, . . . , r𝑁 )⏟  ⏞  

𝐻̂0

+
𝑒2𝐵2

4𝑚𝑐2

∑︁
𝑎

𝑥2𝑎 + 𝑦2𝑎
2

+
𝑒ℏ
2𝑚𝑐

𝐵
(︁
𝐿̂𝑧 + 2𝑆𝑧

)︁
⏟  ⏞  

𝑉

.

По сравнению с гамильтонианом 𝐻̂0 в отсутствии магнитного поля добавилось возмущение 𝑉 , которое
состоит из осцилляторного потенциала с одинаковой жёсткостью 𝑒2𝐵2

4𝑚𝑐2 по осям 𝑥 и 𝑦 для всех электронов и
взаимодействием магнитного момента атома с магнитным полем. В магнитный момент атома − 𝑒ℏ

2𝑚𝑐 (L̂+2Ŝ)
спиновый момент, по сравнению с орбитальным, входит с двойным весом.

Оценим квадратичное по полю 𝐵 возмущение:

𝑒2𝐵2

4𝑚𝑐2

∑︁
𝑎

𝑥2𝑎 + 𝑦2𝑎
2

∼ 𝑒2𝐵2

𝑚𝑐2
𝑎2ат ∼ 𝜀ат𝐵

2𝑎3ат
𝑚𝑐2

∼ 𝜀атℰ𝐵
𝑚𝑐2

.

Здесь 𝜀ат — характерная атомная энергия, ℰ𝐵 — энергия магнитного поля в объёме атома.
Оценим линейное по магнитному полю возмущение:

𝑒ℏ
2𝑚𝑐

𝐵
(︁
𝐿̂𝑧 + 2𝑆𝑧

)︁
∼ 𝑒𝐵𝜆Компт ∼ 𝑒𝐵

𝑒2

ℏ𝑐⏟ ⏞ 
≈ 1

137

𝑎Б ∼ 1

137

𝑒𝐵𝑎
3/2
Б√
𝑎Б

∼
√
𝜀атℰ𝐵
137

.

Отношение линейного по 𝐵 члена к квадратичному

∼ 1

137

𝑚𝑐2√
𝜀атℰ𝐵

обычно велико, а значит квадратичным членом можно пренебречь.
Если спин-орбитальным взаимодействием можно пренебречь, то можно использовать в качестве пра-

вильных волновых функции нулевого порядка теории возмущений Базис-2, тогда добавка к энергии атома
в магнитном поле имеет вид

⟨𝑉 ⟩ = 𝑒ℏ
2𝑚𝑐

(𝑀𝐿 + 2𝑀𝑆).

(О) Такое расщепление уровней (и соответствующее ему расщепление спектральных линий) называют
нормальным (простым) эффектом Зеемана.

Если спин-орбитальным взаимодействием пренебречь нельзя, то теорию возмущений приходится стро-
ить в Базисе-3, в котором 𝑀𝐿 и 𝑀𝑆 не определены. В Базисе-3 до наложения возмущения мы имеем
(2𝐽+1)-мерное подпространство состояний ℋ𝛾𝐿𝑆𝐽 . Если ограничить на это подпространство операторы L̂

и Ŝ, то они окажутся пропорциональны оператору Ĵ. Это следует из того, что в ℋ𝛾𝐿𝑆𝐽 нет нетривиальных
инвариантных подпространств по отношению к поворотам, порождаемых операторами L̂, Ŝ и Ĵ.
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Обозначим ограничение оператора на подпространство ℋ𝛾𝐿𝑆𝐽 тильдой. Тогда можно написать

S̃ = 𝐶J̃.

(̃Ŝ, Ĵ) = (S̃, J̃) = 𝐶𝐽(𝐽 + 1)

С другой стороны,

(Ŝ, Ĵ) =
Ĵ2 + Ŝ2 − (Ĵ− Ŝ)2

2
=
𝐽(𝐽 + 1) + 𝑆(𝑆 + 1)− 𝐿(𝐿+ 1)

2

Отсюда

𝐶 =
𝐽(𝐽 + 1) + 𝑆(𝑆 + 1)− 𝐿(𝐿+ 1)

2𝐽(𝐽 + 1)

L̃+ 2S̃ =

(︂
1 +

𝐽(𝐽 + 1) + 𝑆(𝑆 + 1)− 𝐿(𝐿+ 1)

2𝐽(𝐽 + 1)

)︂
⏟  ⏞  

𝑔𝐽

J̃.

(О) Здесь 𝑔𝐽 — множитель Ланде или гиромагнитный множитель.
Множитель Ланде может меняться от 1 (при 𝑆 = 0) до 2 (при 𝐿 = 0). При 𝐽 = 0 множитель Ланде не

определён, но в этом случае пространство ℋ𝛾𝐿𝑆𝐽 одномерно, и единственное принадлежащее ему состояние
Базиса-3 сферически-симметрично, в следствие чего на нём ⟨𝑆𝑧⟩ = ⟨𝐿̂𝑧⟩ = 0.

Добавка к энергии атома в магнитном поле имеет вид

⟨𝑉 ⟩ = 𝑔𝐽
𝑒ℏ
2𝑚𝑐

𝑀𝐽 .

(О) Такое расщепление уровней (и соответствующее ему расщепление спектральных линий) иногда на-
зывают аномальным эффектом Зеемана.
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Глава 10

Теория рассеяния

10.1 Постановка задачи рассеяния
Задача упругого рассеяния описывает инфинитное движение частиц с определённой энергией в неко-

тором поле, не действующем на бесконечности

− ℏ2

2𝑚
△𝜓 + 𝑉 (r)𝜓 = 𝐸𝜓, 𝑉 (r → ∞) = 0, 𝐸 =

ℏ2𝑘2

2𝑚
. (10.1)

Предполагается, что на рассеиватель (расположенный в окрестности точки r = 0) в некотором направле-
нии падает однородный монохроматический1 поток частиц.

На больших расстояниях от рассеивающего центра потенциал обращается в нуль и частица ведёт себя
как свободная. В области с характерным размером ℓ на больших расстояниях ( 1

𝑘 ≪ ℓ ≪ 𝑟) мы имеем
суперпозицию двух волн близких к плоским монохроматическим: падающей волны и рассеянной волны.
Направление распространения падающей волны везде одинаково. Направление распространения рассе-
янной волны направлено от рассеивающего центра, т. е. это сферическая волна2, а значит её амплитуда
должна спадать как 1

𝑟 .
Таким образом, для задачи рассеяния асимптотика волновой функции на больших расстояниях от

рассеивателя имеет вид

𝜓(r → ∞) = eik0r⏟ ⏞ 
𝜓пад.

+
𝑓(k0,k)

𝑟
ei𝑘𝑟⏟  ⏞  

𝜓расс.

, |k0| = |k| = 𝑘, k = 𝑘 (sin 𝜃 cos𝜑, sin 𝜃 sin𝜑, cos 𝜃)𝑇⏟  ⏞  
n

. (10.2)

Здесь eik0r — падающая волна, 𝑓(k0,k)
𝑟 ei𝑘𝑟 — рассеянная волна, 𝑓(k0,k) = 𝑓(𝜑, 𝜃) — амплитуда рассеяния.

Плотность потока падающих частиц3

jпад. = |𝜓пад.|2 ℏ
𝑚𝜕 arg(𝜓пад.) =

ℏk0

𝑚
, |jпад.| =

ℏ𝑘
𝑚
.

Чтобы детектировать этот поток надо загородить датчик от рассеянных частиц.
Плотность потока рассеянных частиц на больших расстояниях

jрасс. = |𝜓расс.|2 ℏ
𝑚𝜕 arg(𝜓расс.) =

1

𝑟2
|𝑓(𝜑, 𝜃)|2 ℏk

𝑚
=

1

𝑟2
|𝑓(𝜑, 𝜃)|2 ℏ𝑘

𝑚
n.

Чтобы детектировать этот поток надо загородить датчик от частиц налетающего потока, например, диа-
фрагмировать этот поток. Для рассеяния на малые углы разделить налетающие частицы и рассеянные
становится всё сложнее и сложнее, а для рассеяния на нулевой угол разделить их становится невозможно.

(!) Именно для рассеяние на малые углы ∼ 1
𝑘𝑎 (𝑎 — размер рассеивателя) может наблюдаться расхож-

дение между классическим и квантовым рассеянием в «классическом пределе» 𝑘𝑎→ ∞.
Поток частиц в телесный угол 𝑑Ω

𝑑𝐼расс. = (jрасс., 𝑟
2 𝑑Ωn) = |𝑓(𝜑, 𝜃)|2 ℏ𝑘

𝑚
.

1То есть все частицы имеют определённую одинаковую энергию.
2Сферическая волна близка к плоской в области размером ℓ малой по сравнению с расстоянием до центра ( 1

𝑘
≪ ℓ≪ 𝑟).

3Привычную формулу для плотности потока вероятности удобно переписать через модуль и аргумент волновой функции:

j = −
iℏ
2𝑚

(︁
𝜓*𝜕𝜓 − 𝜓𝜕𝜓*

)︁
= |𝜓|2 ℏ

𝑚
𝜕 arg(𝜓), 𝜓 = |𝜓| ei arg(𝜓).
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По определению4 дифференциальное сечения рассеяния:

𝑑𝜎 =
𝑑𝐼расс.

|jпад.|
.

Дифференциальное сечение рассеяния:

𝑑𝜎 = |𝑓 |2 𝑑Ω = |𝑓 |2 𝑑𝜑 𝑑 cos 𝜃. (10.3)

Полное сечение рассеяния:

𝜎 =

ˆ
𝑑𝜎 =

ˆ
|𝑓 |2 𝑑𝜑 𝑑 cos 𝜃. (10.4)

(!**) На самом деле асимптотика волновой функции (10.2) в задаче рассеяния важнее, чем уравнение
Шрёдингера (10.1). Для эксперимента доступно поведение частиц на больших расстояниях от рассеивате-
ля, и это поведение позволяет определить дифференциальное сечение рассеяния. Как устроен рассеива-
тель и описывается ли действие рассеивателя уравнением Шрёдингера мы можем не знать. На больших
расстояниях от рассеивателя работает уравнение Шрёдингера для свободной частицы и для постановки
задачи рассеяния этого достаточно. Например, рассеяние на потенциале предполагает сохранение числа
частиц, тогда как сечение рассеяния вполне может описывать ситуацию, когда часть налетающих частиц
поглощается рассеивателем. В этом случае кроме сечений рассеяния (дифференциального и полного)
можно определить ещё и полное сечение поглощения5:

𝜎погл. =
𝐼погл.

|jпад.|
, (10.5)

где 𝐼погл. — число поглощённых частиц в единицу времени.

10.2 Оптическая теорема

Сама постановка задачи рассеяния предполагает, что единственный источник частиц — падающая вол-
на. Все рассеянные частицы до рассеяния соответствовали падающей волне, а значит после прохождения
рассеивателя падающая волна должна быть ослаблена в той мере, в которой в ней уменьшилось число ча-
стиц. Падающая волна может быть ослаблена только за счёт интерференции с волной рассеянной упруго
строго вперёд. Если падающая волна распространялась вдоль оси 𝑧

𝜓(r → ∞) = ei𝑘𝑧 +
𝑓(𝜑, 𝜃)

𝑟
ei𝑘𝑟,

то рассеяние строго вперёд соответствует 𝜃 = 0.
Падающая волна имеет постоянную амплитуду, а рассеянная — амплитуду ∼ 1

𝑟 , которая исчезает на
бесконечности. Это связано с тем, что мы рассматривали всего один рассеиватель на бесконечный (если
проинтегрировать в плоскости перпендикулярной направлению потока) поток налетающих частиц.

Чтобы увидеть изменение числа частиц в налетающем потоке надо либо диафрагмировать налетаю-
щий поток, либо рассмотреть бесконечное число рассеивателей, расположенных равномерно в плоскости
перпендикулярной направлению потока. Проще рассмотреть второй вариант.

Пусть в плоскости 𝑧 = 0 равномерно с поверхностной плотностью 𝑛 расположены одинаковые рассеи-
ватели. Рассеиватели расположены достаточно редко, чтобы не мешать друг другу.

Для всей совокупности рассеивателей рассеянную волну надо просуммировать по всем рассеивателям
(проинтегрировать по поверхности 𝑧 = 0)

𝜓(r → ∞) = ei𝑘𝑧+

ˆ
𝑓(𝜑, 𝜃)

𝑟
ei𝑘𝑟 𝑛𝑑𝑠, 𝑑𝑠 = 𝑑𝑥0 𝑑𝑦0. (𝑥−𝑥0, 𝑦−𝑦0, 𝑧) = (𝑟 sin 𝜃 cos𝜑, 𝑟 sin 𝜃 sin𝜑, 𝑟 cos 𝜃).

Здесь r = (𝑥, 𝑦, 𝑧)𝑇 задаёт точку в пространстве, в которой задана волновая функция, а 𝑥0, 𝑦0 — точку на
плоскости 𝑧 = 0, в которой расположен рассеиватель.

4Обратите внимание, что сечение рассеяния имеет размерность сечения (площади). В классической физике, если рас-
сеиватель работает детерминистически и направление рассеяния определяется тем, к какую точку рассеивателя попала
частица, дифференциальное сечения рассеяния — площадь поперечного сечения той части налетающего потока частиц,
которая рассеивается в данный телесный угол 𝑑Ω.

Подробнее понятие сечения процесса разобрано в книге МТП, глава 3.14 «Рассеяние».
5Чтобы ввести дифференциальное сечение поглощения акты поглощения надо было бы как-то дифференцировать (раз-

личать).
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Перейдём от интегрирования по 𝑥0, 𝑦0 к интегрированию по углам:

𝑑𝑠 = 𝑑𝑥0 𝑑𝑦0 =
𝑟2 𝑑Ω

cos 𝜃
= 𝑟2 𝑑𝜑

𝑑 cos 𝜃

cos 𝜃
, 𝑟 =

𝑧

cos 𝜃
, 𝑐 = cos 𝜃.

По углу 𝜑 интегрируем от 0 до 2𝜋, а по углу 𝜃 от 0 до 𝜋
2 . По 𝑐 = cos 𝜃 интегрирование получаем от 0 до 1.

Усредним амплитуду рассеяния по углу 𝜑:

𝐹 (𝑐) = 𝐹 (cos 𝜃) =
1

2𝜋

2𝜋ˆ

0

𝑓(𝜑, 𝜃) 𝑑𝜑.

𝜓(𝑧 → +∞) = ei𝑘𝑧
(︂
1 + 𝑛

ˆ
𝑓(𝜑, 𝜃)

𝑟
ei𝑘(𝑟−𝑧) 𝑟2 𝑑𝜑

𝑑𝑐

𝑐

)︂
= ei𝑘𝑧

⎛⎝1 + 2𝜋𝑛

1ˆ

0

𝐹 (𝑐) ei𝑘(𝑟−𝑧) 𝑟
𝑑𝑐

𝑐

⎞⎠ =

= ei𝑘𝑧

⎛⎝1 + 2𝜋𝑛𝑧

1ˆ

0

𝐹 (𝑐) ei𝑘𝑧(1/𝑐−1) 𝑑𝑐

𝑐2

⎞⎠ .

Введём новую переменную интегрирования 𝑔 = 1
𝑐 , 𝑑𝑔 = −𝑑𝑐

𝑐2 , после чего проинтегрируем по частям:

𝜓(𝑧 → +∞) = ei𝑘𝑧

⎛⎝1 + 2𝜋𝑛𝑧

+∞ˆ

1

𝐹 ( 1𝑔 ) e
i𝑘𝑧(𝑔−1) 𝑑𝑔

⎞⎠ = ei𝑘𝑧

⎛⎝1 +
2𝜋𝑛

i𝑘

∞̂

1

𝐹 ( 1𝑔 )
𝜕ei𝑘𝑧(𝑔−1)

𝜕𝑔
𝑑𝑔

⎞⎠ =

= ei𝑘𝑧

⎛⎝1 +
2𝜋𝑛

i𝑘
𝐹 ( 1𝑔 ) e

i𝑘𝑧(𝑔−1)

⃒⃒⃒⃒∞
1

+
2𝜋𝑛

i𝑘

∞̂

1

𝐹 ′( 1𝑔 )
1

𝑔2
ei𝑘𝑧(𝑔−1) 𝑑𝑔

⎞⎠ .

lim
𝑧→0

∞̂

1

𝐹 ′( 1𝑔 )
1

𝑔2
ei𝑘𝑧(𝑔−1) 𝑑𝑔 = 0

𝜓(𝑧 → +∞) = ei𝑘𝑧
(︂
1 +

2𝜋𝑛

i𝑘
𝐹 (0) ei𝑘𝑧∞ − 2𝜋𝑛

i𝑘
𝐹 (1)

)︂
.

Как обычно, при взятии интегралов Фурье можно считать ei∞ = 0, поэтому получаем, что на больших
расстояниях после плоскости, в которой расположены рассеиватели доминирует волна, которая отлича-
ется от падающей волны ei𝑘𝑧 на комплексный множитель (амплитуду), который выражается через 𝐹 (1)
— амплитуду рассеяния строго вперёд:

𝜓(𝑧 → +∞) = ei𝑘𝑧
(︂
1 + i

2𝜋𝑛

𝑘
𝐹 (1)

)︂
.

Плотность потока частиц в такой волне отличается от плотности потока в падающей волне на следующий
множитель

|jпрош.|
|jпад.|

=

⃒⃒⃒⃒
1 + i

2𝜋𝑛

𝑘
𝐹 (1)

⃒⃒⃒⃒2
=

(︂
1 + i

2𝜋𝑛

𝑘
𝐹 (1)

)︂(︂
1− i

2𝜋𝑛

𝑘
𝐹 *(1)

)︂
=

= 1 +
2𝜋

𝑘
(i𝐹 (1)− i𝐹 *(1))⏟  ⏞  

−2 Im𝐹 (1)

𝑛+
4𝜋2

𝑘2
|𝐹 (1)|2 𝑛2.

Взаимное влияние рассеивающих центров должно быть мало, поэтому нас интересует предел 𝑛 → 0, в
этом переделе

|jпрош.|
|jпад.|

= 1− 4𝜋

𝑘
Im𝐹 (1)𝑛+ 𝑜(𝑛). (10.6)

С другой стороны, если пренебречь взаимным влиянием рассеивателей,

|jпрош.|
|jпад.|

= 1− 𝜎полн. 𝑛, (10.7)
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где 𝜎полн. — полное сечение всех процессов, которые убирают частицы из налетающего потока, т. е. сумма
полного сечения рассеяния с полным сечением поглощения и полным сечением всех реакций, в которые
могут вступить налетающие частицы6.

Сравнив формулы (10.6) и (10.7) между собой, получаем оптическую теорему, которая связывает
мнимую часть амплитуды упругого рассеяния строго вперёд с полным сечением всех процессов:

𝜎полн. =
4𝜋

𝑘
Im 𝑓(𝜃 = 0). (10.8)

10.3 Интегральное уравнение рассеяния

Перепишем уравнение Шрёдингера для задачи рассеяния (10.1) с помощью функции Грина и построим
соответствующую теорию возмущений, как в параграфе 1.6 «Оператор Грина в непрерывном спектре».

Запишем уравнение Шрёдингера (10.1) перенеся в правую часть уравнения вклад потенциала:(︂
− ℏ2

2𝑚
△− 𝐸

)︂
𝜓(r) = −𝑉 (r)𝜓(r). (10.9)

Выразить решение уравнения (10.9) через решение неоднородного уравнения(︂
− ℏ2

2𝑚
△− 𝐸

)︂
𝜓(r) = 𝐹 (r) =

ˆ
δ3(r− r′)𝐹 (r′) 𝑑3r. (10.10)

(︂
− ℏ2

2𝑚
△r − 𝐸

)︂
𝐺(r, r′) = δ3(r− r′) (10.11)

𝜓(r) = 𝜓0(r)−
ˆ
𝐺(r, r′)𝑉 (r′)𝜓(r′) 𝑑3r′ (10.12)

Удобно выбрать такое представление (10.12) функции 𝜓(r), чтобы первое слагаемое соответствовало пада-
ющей волне 𝜓0(r) = eik0r (падающая волна как раз решает однородное уравнение), а второе — рассеянной.

Функция Грина является решением неоднородного уравнения (10.11), такое решение определено с
точностью до добавки, решающей соответствующее однородное (с равной нулю правой частью) уравнение.
Разным функциям Грина при фиксированной функции 𝜓0(r) будут соответствовать разные волновые
функции (10.12), решающие уравнение (10.9).

Пусть
𝐺(r, r′) = 𝐺(𝑅), 𝑅 = |R|, R = r− r′.(︂

− ℏ2

2𝑚
△R − 𝐸

)︂
𝐺(R) = δ3(R) (10.13)

Удобно представить функцию Грина в виде интеграла Фурье:

𝐺(R) =
1

(2𝜋)3/2

ˆ
eiqR 𝐺̃(q) 𝑑3q, 𝐺̃(q) =

1

(2𝜋)3/2

ˆ
e−iqR𝐺(R) 𝑑3R.

(︂
− ℏ2

2𝑚
△R − 𝐸

)︂
𝐺(R) =

1

(2𝜋)3/2

ˆ
eiqR

(𝑞2 − 𝑘2)ℏ2

2𝑚
𝐺̃(q) 𝑑3q = δ3(R) =

1

(2𝜋)3

ˆ
eiqR 𝑑3q.

𝐺̃(q) =
2𝑚

(2𝜋)3/2ℏ2
1

𝑞2 − 𝑘2
.

𝐺(R) =
1

(2𝜋)3/2

ˆ
eiqR

2𝑚

(2𝜋)3/2ℏ2
1

𝑞2 − 𝑘2
𝑑3q =

2𝑚

(2𝜋)3ℏ2

ˆ
ei𝑞𝑅 cos𝜗

𝑞2 − 𝑘2
𝑞2 𝑑𝜙 𝑑 cos𝜗 𝑑𝑞⏟  ⏞  

𝑑3q

.

Здесь углы 𝜙 и 𝜗 — это сферические углы, если ось 𝑧 направить вдоль вектора R.
От угла 𝜙 подынтегральное выражение не зависит, а интегрирование идёт от 0 до 2𝜋, что даёт мно-

житель
2𝜋ˆ

0

𝑑𝜙 = 2𝜋.

6Не должно быть только реакций, которые добавляют лишние частицы в налетающий поток.
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Re 𝑞

Im 𝑞

0 𝑘

−𝑘

ℛ → ∞

×𝑘 + i𝜖

×−(𝑘 + i𝜖)

Рис. 10.1: Контур интегрирования в формуле (10.14). Чтобы сместить правый полюс внутрь контура, а левый
— наружу можно добавить к 𝑘 малую мнимую добавку i𝜖 (𝜖 > 0), которую потом устремить к нулю. Смещённые
положения полюсов обозначены крестиками (×)

По 𝐶 = cos𝜗 интегрирование идёт от −1 до +1, что даёт множитель

+1ˆ

−1

ei𝑞𝑅𝐶 𝑑𝐶 =
ei𝑞𝑅𝐶

i𝑞𝑅

⃒⃒⃒⃒+1

−1

=
ei𝑞𝑅 − e−i𝑞𝑅

i𝑞𝑅
.

Остаётся проинтегрировать по 𝑞 от 0 до +∞:

𝐺(R) =
2𝑚

(2𝜋)2ℏ2
1

i𝑅

+∞ˆ

0

ei𝑞𝑅 − e−i𝑞𝑅

𝑞2 − 𝑘2
𝑞 𝑑𝑞 =

2𝑚

(2𝜋)2ℏ2
1

i𝑅

+∞ˆ

−∞

ei𝑞𝑅

𝑞2 − 𝑘2
𝑞 𝑑𝑞. (10.14)

Часть подынтегрального выражения, содержащую e−i𝑞𝑅 мы проинтегрировали сделав замену 𝑞 → −𝑞, это
дополнило интеграл от другого слагаемого до интеграла по всей вещественной прямой.

Интеграл (10.14) имеет полюсы в точках 𝑞 = ±𝑘. Мы будем брать этот интеграл с помощью выче-
тов. Подынтегральное выражение пропорционально ei𝑞𝑅 в верхней полуплоскости комплексной плоскости
эта экспонента затухает, а в нижней — нарастает, поэтому чтобы дополнить вещественную прямую до
замкнутого контура интегрирования, замыкать её следует через верхнюю полуплоскость (см. рис. 10.1).

Вклады вычетов в точках 𝑞 = ±𝑘 пропорциональны e±i𝑘𝑅

𝑅 , т. е. волне расходящейся от начала коор-
динат и волне сходящейся к началу координат. Мы хотим выразить через функцию Грина рассеянную
волну, поэтому вычеты надо обходить так, чтобы внутрь контура попал только вычет в точке 𝑞 = +𝑘 (см.
рис. 10.1, аналогично рис. 1.2).

𝐺(R) =
2𝑚

(2𝜋)2ℏ2
1

i𝑅
2𝜋i

ei𝑘𝑅

2𝑘
𝑘⏟  ⏞  

вычет

=
𝑚

2𝜋ℏ2
ei𝑘𝑅

𝑅
. (10.15)

Подставив в уравнение (10.12) 𝜓0 = eik0r и функцию Грина (10.15) получаем интегральное уравнение
задачи рассеяния на волновую функцию с асимптотикой (10.2)

𝜓(r) = eik0r − 𝑚

2𝜋ℏ2

ˆ
ei𝑘|r−r′|

|r− r′|
𝑉 (r′)𝜓(r′) 𝑑3r′. (10.16)

Будем считать, что характерный радиус действия потенциала 𝑎, тогда интеграл берётся по области
𝑟′ < 𝑎, а на больших расстояниях у нас имеется малый параметр 𝑎/𝑟.

При r → ∞ с точностью до линейного члена по малому параметру получаем

𝑅 = |r− r′| = 𝑟 − (n, r′) + 𝑜(𝑎/𝑟), n =
r

𝑟
, k = 𝑘n.

Асимптотика волновой функции (10.16) имеет вид, соответствующий (10.2)

𝜓(r → ∞) = eik0r +
ei𝑘𝑟

𝑟

(︂
− 𝑚

2𝜋ℏ2

ˆ
e−ikr′ 𝑉 (r′)𝜓(r′) 𝑑3r′

)︂
⏟  ⏞  

𝑓(k0,k)=𝑓(𝜑,𝜃)

. (10.17)
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(л) Для того, чтобы сместить полюсы с контура интегрирования правильным образом (см. рис. 10.1)
мы добавили к волновому числу 𝑘 мнимую добавку i𝜖 (𝜖 > 0), которую потом устремили к нулю. Обычно
в таких случаях вместо 𝑘 + i𝜖 пишут 𝑘 + i0. Если для такого волнового числа вычислить квадрат, то он
тоже получает мнимую положительную добавку

(𝑘 + i𝜖)2 = 𝑘2 + i2𝜖𝑘 + 𝑜(𝜖).

Обычно эту формулу пишут в виде
(𝑘 + i0)2 = 𝑘2 + i0.

Формула (10.14) записывается как

𝐺(R) =
2𝑚

(2𝜋)2ℏ2
1

i𝑅

+∞ˆ

−∞

ei𝑞𝑅

𝑞2 − 𝑘2 − i0
𝑞 𝑑𝑞 =

2𝑚

(2𝜋)2ℏ2
1

i𝑅

+∞ˆ

−∞

ei𝑞𝑅

(𝑞 − 𝑘 − i0)(𝑞 + 𝑘 + i0)
𝑞 𝑑𝑞. (10.18)

Такая запись уже автоматически указывает правильный порядок обхода полюсов, приводящий к формуле
(10.15).

10.4 Борновское приближение
Из интегрального уравнения (10.16) можно методом последовательных приближений, взяв в качестве

нулевого приближения eik0r строить теорию возмущений. Получающиеся при этом приближённые реше-
ния задачи рассеяния называются борновскими приближениями. Если упоминается борновское прибли-
жение без указания порядка приближения, то подразумевается первый порядок. Им мы и ограничимся7.

(Первое) борновское приближение получается, если в 𝑓(k0,k) = 𝑓(𝜑, 𝜃) из формулы (10.17) вместо
𝜓(r′) подставить 𝜓0(r

′) = eik0r
′
:

𝑓Б(k0,k) = 𝑓Б(𝜑, 𝜃) = − 𝑚

2𝜋ℏ2

ˆ
e−i(k−k0)r

′
𝑉 (r′) 𝑑3r′. (10.19)

Разность волновых векторов в показателе экспоненты соответствует переданному от потенциала частице
импульсу:

pперед. = ℏ(k− k0).

(ф) В борновском приближении амплитуда рассеяния с точностью до постоянного коэффициента —
это преобразование Фурье потенциала, где волновому вектору соответствует переданный импульс. Так
что амплитуда рассеяния как функция переданного импульса содержит всю информацию для вычис-
ления рассеивающего потенциала. Дифференциальное сечение рассеяния пропорционально абсолютной
величине амплитуды рассеяния, так что измерив на эксперименте дифференциальное сечение рассеяния
как функцию переданного импульса мы получаем преобразование Фурье потенциала, взятое по модулю.
Информация о фазе амплитуды рассеяния при этом теряется, но всё равно мы получаем существенную
информацию о рассеивающем потенциале (особенно если у нас есть теоретическая модель, которую мы
хотим проверить на эксперименте).

Критерий применимости борновского приближения — малость отклонения волновой функции (10.16)
от eik0r, т. е.

𝐹 =

⃒⃒⃒⃒
⃒− 𝑚

2𝜋ℏ2

ˆ
ei𝑘|r−r′|

|r− r′|
𝑉 (r′)𝜓(r′) 𝑑3r′

⃒⃒⃒⃒
⃒≪ 1. (10.20)

Оценим выполнение критерия применимости для двух частных случаев. Обозначим 𝑎 — характерный
радиус потенциала, 𝑉 — характерная величина потенциала.

• Медленные частицы: 𝑘𝑎 ∼
< 1. Оценим критерий применимости из соображений размерности.

𝐹 ∼ 𝑚

ℏ2
1

𝑎
𝑉 1𝑎3 ∼ 𝑉

(︂
ℏ2

2𝑚𝑎2

)︂−1

≪ 1. (10.21)

Величина 𝑎
ℏ — минимальная неопределённость импульса, которую может иметь частица локализо-

ванная в области размером 𝑎, соответственно 𝜀min = ℏ2

2𝑚𝑎2 — минимальная энергия, которую может
иметь частица, локализованная в области размером 𝑎. Так что (10.21) можно переписать как

𝑉 ≪ 𝜀min.
7Полученная выше оптическая теорема выполняется для точного решения задачи рассеяния, а значит для приближения

конечного порядка она может нарушаться.
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• Быстрые частицы: 𝑘𝑎≫ 1. Оценим критерий применимости из квазиклассики. Квазиклассическая
волновая функция может быть выражена через классический импульс:

𝑝(r) =
√︀
2𝑚(𝐸 − 𝑉 (r)) =

√︃
2𝑚

(︂
ℏ2𝑘2
2𝑚

− 𝑉 (r)

)︂
= ℏ𝑘

√︂
1− 2𝑚𝑉 (r)

ℏ2𝑘2
∼ ℏ𝑘

(︂
1− 𝑚𝑉

ℏ2𝑘2

)︂
Набег фазы на рассеивателе

𝛿𝛼 ∼ 𝑝𝑎

ℏ
∼ 𝑘𝑎

(︂
1− 𝑚𝑉

ℏ2𝑘2

)︂
.

Вклад потенциала в набег фазы должен быть малым:

𝛿𝑉 𝛼 ∼ 𝑘𝑎
2𝑚𝑉

ℏ2𝑘2
=

1

𝑘𝑎
𝑉

(︂
ℏ2

2𝑚𝑎2

)︂−1

≪ 1. (10.22)

𝑉 ≪ 𝑘𝑎 𝜀min.

Часто приходится рассматривать рассеяния на сферически-симметричных потенциалах 𝑉 (r) = 𝑉 (𝑟),
выпишем соответствующую амплитуду рассеяния в борновском приближении (10.19). Удобно направить
ось 𝑧 вдоль k0, т. е. налетающего потока частиц. Тогда амплитуда рассеяния не зависит от угла 𝜑:

𝑓Б(𝜃) = − 𝑚

2𝜋ℏ2

ˆ
e−iqr′𝑉 (𝑟′) 𝑟′2 𝑑𝜙 𝑑 cos𝜗 𝑑𝑟′,

где переменные интегрирования 𝜙 и 𝜗 удобно ввести, как сферические углы, для которых в роли оси 𝑧
выступает направление вектора q,

q = k− k0 — переданный импульс (делённый на ℏ),

𝑞 = |q| = 2𝑘 sin 𝜃
2 .

Обозначаем 𝐶 = cos𝜗, интегрируем по 𝐶 от −1 до +1 и получаем

𝑓Б(𝜃) = − 𝑚

2𝜋ℏ2

ˆ
e−i𝑞𝑟′𝐶𝑉 (𝑟′) 𝑟′2 2𝜋 𝑑𝐶 𝑑𝑟′ = −𝑚

ℏ2

∞̂

0

e−i𝑞𝑟′ − ei𝑞𝑟
′

−i𝑞𝑟′
𝑟′2 𝑑𝑟′ = − 2𝑚

ℏ2𝑞

∞̂

0

sin(𝑞𝑟′) 𝑟′ 𝑑𝑟′.

Окончательно для сферически симметричного потенциала

𝑓Б(𝜃) = − 2𝑚

ℏ2𝑞

∞̂

0

sin(𝑞𝑟′) 𝑟′ 𝑑𝑟′ = − 𝑚

ℏ2𝑘 sin 𝜃
2

∞̂

0

sin(2𝑘𝑟′ sin 𝜃
2 ) 𝑟

′ 𝑑𝑟′. (10.23)

10.5 Фазовая теория рассеяния
Фазовая теория рассеяния применима к рассеянию на сферически-симметричных рассеивателях. При

движении в центральном (сферически-симметричном) поле мы можем воспользоваться сохранением ор-
битального момента импульса и свести задачу к одномерным задачам о радиальном движении с разными
значениями 𝑙. Мы уже делали это для финитного движения (дискретного спектра, связанных состояний),
в задаче рассеяния тот же метод применяется для инфинитного движения (непрерывного спектра).

В качестве рассеивателя рассмотрим сферически-симметричный потенциал 𝑉 (𝑟), такой что 𝑉 (∞) = 0.
Состояния с определённой энергией можно искать в виде произведения радиальной части на угловую:

𝜓𝐸(r) = 𝑅𝑙(𝑟)𝑌𝑙𝑚𝑙
(𝜃, 𝜑). (10.24)

ˆ⃗
𝑙2𝑌𝑙𝑚𝑙

= 𝑙(𝑙 + 1)𝑌𝑙𝑚𝑙
, 𝑙̂𝑧𝑌𝑙𝑚𝑙

= 𝑚𝑌𝑙𝑚𝑙
.

− ℏ2

2𝑚

1

𝑟2
𝜕

𝜕𝑟
𝑟2
𝜕

𝜕𝑟
𝑅𝑙 +

(︂
ℏ2𝑙(𝑙 + 1)

2𝑚𝑟2
+ 𝑉 (𝑟)

)︂
𝑅𝑙 = 𝐸𝑅𝑙. (10.25)

Такие состояния не имеют правильной асимптотики для задачи рассеяния (10.2), но волновая функция в
задаче рассеяния соответствует определённому значению энергии, а значит она попадает в подпростран-
ство, натянутое на волновые функции вида (10.24) и может быть по таким функциям разложено.

(ф) Уравнение (10.25) можно переписать через функцию 𝜒𝑙(𝑟) = 𝑟 𝑅𝑙(𝑟):

− ℏ2

2𝑚

𝜕2𝜒𝑙
𝜕𝑟2

+

(︂
ℏ2𝑙(𝑙 + 1)

2𝑚𝑟2
+ 𝑉 (𝑟)

)︂
𝜒𝑙 = 𝐸𝜒𝑙, 𝜒𝑙(0) = 0. (10.26)
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Уравнение (10.26) соответствует одномерному движению частицы в потенциале

𝑉эфф.(𝑟) =

{︃
ℏ2𝑙(𝑙+1)
2𝑚𝑟2 + 𝑉 (𝑟), 𝑟 > 0,

+∞, 𝑟 ⩽ 0.
(10.27)

Асимптотика решения уравнения (10.26) на бесконечности соответствует асимптотике одномерной задачи
рассеяния. Таким образом трёхмерная задача рассеяния в сферически-симметричном потенциале сводится
к совокупности одномерных задач рассеяния в потенциалах (10.27). Причём коэффициенты отражения в
таких потенциалах заведомо равны 1, поскольку частица не может уйти на отрицательную полупрямую.
При этом амплитуды рассеяния равны 1 по модулю. Так что асимптотика решения уравнения (10.26)
определяется фазой (аргументом) амплитуд отражения в потенциалах (10.27). Ниже мы параметризуем
эти фазы параметрами 𝛿𝑙.

Если налетающий поток частиц направлен вдоль оси 𝑧, то волновая функция оказывается аксиально-
симметричной и фаза рассеяния не зависит от угла 𝜑:

𝜓(r → ∞) = ei𝑘𝑧 +
𝑓(𝜃)

𝑟
ei𝑘𝑟, (10.28)

Поскольку 𝑌𝑙𝑚𝑙
= 𝐶𝑙𝑚𝑙

𝑃𝑚𝑙

𝑙 (cos 𝜃) ei𝑚𝑙𝜑, в разложении участвуют только функции для которых 𝑚𝑙 = 0.

Далее нам будет удобнее вместо 𝑌𝑙0(𝜃, 𝜑) =
√︁

2𝑙+1
4𝜋 𝑃𝑙(cos 𝜃) использовать полиномы Лежандра 𝑃𝑙(cos 𝜃).

+1ˆ

−1

𝑃𝑙1(𝑐)𝑃𝑙2(𝑐) 𝑑𝑐 =
2

2𝑙1 + 1
δ𝑙1𝑙2 , 𝑐 = cos 𝜃.

Нам также понадобится следующее свойство полиномов Лежандра:

𝑃𝑙(+1) = +1, 𝑃𝑙(−1) = (−1)𝑙. (10.29)

Разложение волновой функции в задаче рассеяния по функциям вида (10.24) запишется в виде

𝜓(r) =

∞∑︁
𝑙=0

𝑅𝑙(𝑟)𝑃𝑙(𝑐).

Также нам понадобится разложение по функциям вида (10.24) налетающей волны:

ei𝑘𝑧 = ei𝑘𝑟 cos 𝜃 =

+∞∑︁
𝑙=0

𝐺𝑙(𝜌)𝑃𝑙(𝑐), 𝜌 = 𝑘𝑟.

При этом нас интересуют не сами функции 𝑅𝑙 и 𝐺𝑙, а их асимптотики при 𝜌→ ∞.

𝐺𝑙(𝜌)
2

2𝑙 + 1
=

+1ˆ

−1

ei𝜌𝑐⏟ ⏞ 
𝑑
𝑑𝑐

ei𝜌𝑐

i𝜌

𝑃𝑙(𝑐) 𝑑𝑐 =
ei𝜌𝑐

i𝜌
𝑃𝑙(𝑐)

⃒⃒⃒⃒+1

−1⏟  ⏞  
главный член при 𝜌 → ∞

−
+1ˆ

−1

ei𝜌𝑐

i𝜌⏟ ⏞ 
𝑑
𝑑𝑐

ei𝜌𝑐

(i𝜌)2

𝑃 ′
𝑙 (𝑐) 𝑑𝑐.

Мы видим, что последовательным интегрированием по частям мы получаем члены пропорциональные 1
𝜌𝑘

,
𝑘 = 1, . . . , 𝑙 + 1 (после 𝑙 + 1 дифференцирования полином степени 𝑙 обратится в нуль). Но нас интересует
главный член при больших 𝜌.

𝐺𝑙(𝜌→ ∞) =
2𝑙 + 1

2i𝜌

(︀
ei𝜌 − (−1)𝑙e−i𝜌

)︀
.

В получившимся выражении мы видим сходящуюся к началу координат волну e−i𝜌 и волную расходя-
щуюся от начала координат ei𝜌 с той же по модулю амплитудой. Так и должно быть, чтобы входящий
и исходящий потоки компенсировали друг друга и плотность вероятности в стационарном состоянии не
зависела от времени. Множитель 1

𝜌 связан со тем, что мы работаем в сферических координатах.
При разложении функции с асимптотикой (10.28) вклад в сходящуюся волну даёт только налетаю-

щий поток частиц, а рассеянная волна даёт вклад только в расходящуюся волну. При этом входящий
и исходящий потоки снова должны компенсировать друг друга, а значит соответствующие амплитуды
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должны совпадать по модулю. Это позволяет нам написать асимптотику 𝑅𝑙(𝜌 → ∞) с точностью до
одного параметра 𝛿𝑙, который называется фазой рассеяния:

𝑅𝑙(𝜌→ ∞) =
2𝑙 + 1

2i𝜌

(︁
ei(𝜌+2𝛿𝑙) − (−1)𝑙e−i𝜌

)︁
∼

sin(𝑘𝑟 − 𝜋𝑙
2 + 𝛿𝑙)

𝑟
. (10.30)

Для определения фазы рассеяния 𝛿𝑙 следует исследовать уравнение (10.25).
Асимптотика рассеянной волны имеет вид

𝑓(𝜃)

𝑟
ei𝑘𝑟 =

∞∑︁
𝑙=0

(𝑅𝑙(𝑘𝑟)−𝐺𝑙(𝑘𝑟)) 𝑃𝑙(cos 𝜃) =
ei𝑘𝑟

𝑟

∞∑︁
𝑙=0

(2𝑙 + 1)
e2i𝛿𝑙 − 1

2i𝑘⏟  ⏞  
𝑓𝑙

𝑃𝑙(cos 𝜃) (10.31)

𝑓(𝜃) =

∞∑︁
𝑙=0

(2𝑙 + 1)𝑓𝑙 𝑃𝑙(cos 𝜃), 𝑓𝑙 =
e2i𝛿𝑙 − 1

2i𝑘
=

ei𝛿𝑙

𝑘
sin 𝛿𝑙.

𝑑𝜎 = |𝑓(𝜃)|2 𝑑Ω.

𝜎 =

ˆ
𝑑𝜎 =

∞∑︁
𝑙=0

𝜎𝑙, 𝜎𝑙 = 4𝜋(2𝑙 + 1) |𝑓𝑙|2 = 4𝜋(2𝑙 + 1)
sin2 𝛿𝑙
𝑘2

.

𝑓𝑙 называется парциальной амплитудой рассеяния, а 𝜎𝑙 — парциальным сечением рассеяния.
Для полученных амплитуд и сечений рассеяния мы можем проверить оптическую теорему (10.8) (см.

§ 10.2).

𝑓(0) =

∞∑︁
𝑙=0

(2𝑙 + 1)𝑓𝑙 𝑃𝑙(1)⏟  ⏞  
1

=

∞∑︁
𝑙=0

(2𝑙 + 1)
ei𝛿𝑙

𝑘
sin 𝛿𝑙 =

∞∑︁
𝑙=0

(2𝑙 + 1)
cos 𝛿𝑙 + i sin 𝛿𝑙

𝑘
sin 𝛿𝑙.

4𝜋

𝑘
Im 𝑓(0) = 4𝜋

∞∑︁
𝑙=0

(2𝑙 + 1)
1

𝑘2
sin2 𝛿𝑙 = 𝜎.

В данном случае имеет место только упругое рассеяние, поэтому 𝜎 = 𝜎полн..

10.5.1 Рассеяние с поглощением*
Уравнение Шрёдингера для движения частицы в потенциале (10.1), как и полученное из него в

сферически-симметричном случае методом разделения переменных уравнение (10.25) и эквивалентное
ему (10.26) могут описывать только процессы с сохраняющимся числом частиц. Однако, асимптотика на
бесконечности (10.2) позволяет описывать процессы, при которых число частиц не сохраняется8, посколь-
ку данная асимптотика описывает поведение свободной частицы на больших расстояниях от рассеивателя,
и не ограничивает процессы при конечных значениях 𝑟.

Рассмотрим рассеяние с поглощением в сферически симметричном случае.
Асимптотика (10.30) в этом случае модифицируется с заменой ei2𝛿𝑙 на 𝑆𝑙:

𝑅𝑙(𝜌→ ∞) =
2𝑙 + 1

2i𝜌

(︀
𝑆𝑙e

i𝜌 − (−1)𝑙e−i𝜌
)︀
, |𝑆𝑙| ⩽ 1. (10.32)

Здесь 𝑆𝑙 — амплитуда отражения9 частицы с данным орбитальным моментом 𝑙. Если |𝑆𝑙| = 1, то 𝑆𝑙 = ei2𝛿𝑙

и мы возвращаемся к асимптотике (10.30) и обычным вещественным фазам рассеяния 𝛿𝑙.
Если |𝑆𝑙| < 1 (есть поглощение), то такая амплитуда не может быть получена из уравнения вида (10.25).

Вместо этого нужны какие-то другие способы описания взаимодействия частицы с рассеивателем.
Вместо уравнения (10.31) мы получаем

𝑓(𝜃)

𝑟
ei𝑘𝑟 =

∞∑︁
𝑙=0

(𝑅𝑙(𝑘𝑟)−𝐺𝑙(𝑘𝑟)) 𝑃𝑙(cos 𝜃) =
ei𝑘𝑟

𝑟

∞∑︁
𝑙=0

(2𝑙 + 1)
𝑆𝑙 − 1

2i𝑘⏟  ⏞  
𝑓𝑙

𝑃𝑙(cos 𝜃) (10.33)

𝑓(𝜃) =

∞∑︁
𝑙=0

(2𝑙 + 1)𝑓𝑙 𝑃𝑙(cos 𝜃), 𝑓𝑙 =
𝑆𝑙 − 1

2i𝑘
.

8Мы уже обсуждали выше процессы с несохранением числа частиц, при определении сечения поглощения (10.5).
9По сравнению с постановкой обычной одномерной задачи рассеяния в асимптотике (10.32) у падающей волны присут-

ствует знак (−1)𝑙+1. Этот знак нужен исключительно для удобства сопоставления с асимптотикой (10.30).
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Для дифференциального и полного сечения рассеяния получаем

𝑑𝜎 = |𝑓(𝜃)|2 𝑑Ω.

𝜎расс. =

ˆ
𝑑𝜎 =

∞∑︁
𝑙=0

𝜎𝑙, 𝜎𝑙 = 4𝜋(2𝑙+1) |𝑓𝑙|2 = 4𝜋(2𝑙+1)
|𝑆𝑙 − 1|2

4𝑘2
= 4𝜋(2𝑙+1)

1 + |𝑆𝑙|2 − 2Re𝑆𝑙
4𝑘2

. (10.34)

Но кроме рассеяния теперь есть ещё и поглощение. Для частицы с орбитальным моментом 𝑙 вероят-
ность поглощения составляет

𝑝погл.
𝑙 = 1− |𝑆𝑙|2.

Но как от вероятностей перейти к сечению?
Мы видим, что максимальное возможное значения парциального сечения рассеяния соответствует

𝑆𝑙 = ei2𝛿𝑙 = −1

max
𝑆𝑙

𝜎𝑙 =
4𝜋(2𝑙 + 1)

𝑘2
.

Какая часть этого максимального парциального сечения может прийтись на поглощение?
Воспользуемся оптической теоремой (10.8)

𝑓(0) =

∞∑︁
𝑙=0

(2𝑙 + 1)𝑓𝑙 =

∞∑︁
𝑙=0

(2𝑙 + 1)
𝑆𝑙 − 1

2i𝑘
.

𝜎полн. =
4𝜋

𝑘
Im 𝑓(0) = 4𝜋

∞∑︁
𝑙=0

(2𝑙 + 1)
2− 2Re𝑆𝑙

4𝑘2

𝜎погл. = 𝜎полн. − 𝜎расс. = 4𝜋

∞∑︁
𝑙=0

(2𝑙 + 1)
1− |𝑆𝑙|2

4𝑘2
= 4𝜋

∞∑︁
𝑙=0

(2𝑙 + 1)
𝑝погл.
𝑙

4𝑘2
.

Мы видим, что на поглощение может прийтись не более четверти максимального парциального сечения.
Откуда взялось это соотношение? Посмотрим внимательно на выражение для парциальной амплитуды
рассеяния, оно содержит |𝑆𝑙 − 1|2. 𝑆𝑙 — амплитуда вероятности (амплитуда отражения при данном 𝑙 на
потенциале 𝑉 (𝑟)), и 1 — тоже амплитуда вероятности (амплитуда отражения при данном 𝑙 для свобод-
ной частицы). Разность этих двух амплитуд соответствует тому, что мы вычитаем из волновой функции
падающую волну ei𝑘𝑧. Физически это означает, что мы ставим диафрагму так, что для интересующих
нас направлений она отсекает налетающий поток частиц и на детектор попадают только рассеянные ча-
стиц. При вычитании двух амплитуд происходит интерференция, которая может увеличивать вероятность
вплоть до четырёх раз (при 𝑆𝑙 = −1 по сравнению с 𝑆𝑙 = 0). Поэтому максимальное парциальной сечение
поглощения оказывается в 4 раза меньше, чем максимальное парциальное сечение рассеяния.

(ф) Поглощения без рассеяния не бывает! Если есть поглощение, то есть и рассеяние (дифракция на
поглощающем объекте).

Максимальное парциальное сечения поглощения

𝜋

𝑘2
(2𝑙 + 1) =

𝜋

𝑘2
[(𝑙 + 1)2 − 𝑙2].

Это площадь кольца (см. рис. 10.2) между двумя концентрическими окружностями радиусами 𝑙+1
𝑘 и 𝑙

𝑘 .
Эти радиусы соответствуют прицельным параметрам10 отвечающим классическим моментам импульса
ℏ(𝑙 + 1) и ℏ𝑙.

10.5.2 Рассеяние и поглощение на большом чёрном шаре*

Рассмотрим рассеяния и поглощение частиц на большом шаре радиуса 𝑎 (𝑘𝑎 ≫ 1) поглощающем все
попадающие в него частицы.

Предел 𝑘𝑎 ≫ 1 — это классический предел, так что мы можем воспользоваться полуклассическими
соображениями.

Если 𝑏 — прицельный параметр частицы (расстояние от прямой, по которой она исходно движется до
параллельной прямой, проходящей через центр мишени), то момент импульса (размерный и обезразме-
ренный) частицы равен

|L| = 𝑝𝑏 = ℏ𝑘𝑏, 𝑙 = 𝑘𝑏.

10Прицельный параметр частицы — расстояние от прямой, по которой она исходно движется до параллельной прямой,
проходящей через центр мишени.

100



𝑙
𝑘

𝑙+1
𝑘

Рис. 10.2: Кольцо, площадь которого соответствует максимальному парциальному сечению поглощения с мо-
ментом импульса (размерным) ℏ𝑙. Можно считать, что это кольцо расположено на бесконечности в плоскости
перпендикулярной налетающему потоку частиц, причём частица, пролетающая через центр кольца имеет направ-
ление движения строго к началу координат (нулевой прицельный параметр). Классические частицы пролетающие
через кольцо имеют момент импульса от ℏ𝑙 до ℏ(𝑙 + 1)

Частицы у которых 𝑏 ⩽ 𝑎 попадают в шар и им поглощаются, что соответствует тому, что поглощаются
все частицы у которых 𝑙 ⩽ 𝑘𝑎.

Частицы у которых 𝑏 > 𝑎 пролетают мимо шара, это частицы у которых 𝑙 > 𝑘𝑎.
Из таких полуклассических представлений полагаем

𝑆𝑙 =

{︂
0, 𝑙 ⩽ 𝑘𝑎,
1, 𝑙 > 𝑘𝑎.

(10.35)

Сечение поглощения даёт ожидаемый ответ — площадь поперечного сечения шара:

𝜎погл. = 4𝜋

∞∑︁
𝑙=0

(2𝑙 + 1)
1− |𝑆𝑙|2

4𝑘2
= 4𝜋

𝑘𝑎∑︁
𝑙=0

(2𝑙 + 1)
1

4𝑘2
=

𝜋

𝑘2
(2𝑘𝑎+ 1 + 0)(𝑘𝑎+ 1)

2
≈ 𝜋𝑎2.

Но полное сечение рассеяния оказывается таким же:

𝜎расс. = 4𝜋

∞∑︁
𝑙=0

(2𝑙 + 1)
|𝑆𝑙 − 1|2

4𝑘2
= 4𝜋

𝑘𝑎∑︁
𝑙=0

(2𝑙 + 1)
1

4𝑘2
≈ 𝜋𝑎2.

Сечение рассеяния не мало, но в классике мы его не замечаем, потому, что это рассеяние на малые углы,
рассеяние на которые трудно детектировать. Рассеяние на чёрном шаре — это дифракция. Характерные
углы на которые происходит рассеяние — ∼ 1

𝑘𝑎 ≪ 1.

10.6 Рассеяние тождественных частиц
Пусть две тождественные частицы со спином 𝑠 каждая рассеиваются друг на друге. Задача двух тел

массами 𝑚1 = 𝑚1 = 𝑚 в системе отсчёта центра масс сводится к задаче движения одного тела массы
𝜇 = 𝑚1𝑚2

𝑚1+𝑚+2 = 𝑚
2 . При этом замена r = r1 − r2 → −r соответствует перестановке пространственных

координат частиц.
Оператор перестановки частиц действует так:

𝑃12Ψ(r1,𝑚
𝑠
1; r2,𝑚

𝑠
2) = Ψ(r2,𝑚

𝑠
2; r1,𝑚

𝑠
1) = (−1)2𝑠Ψ(r1,𝑚

𝑠
1; r2,𝑚

𝑠
2).

Мы записали общую формулу для бозонов ((−1)2𝑠 = +1) и фермионов ((−1)2𝑠 = −1).
Асимптотика волновой функции для рассеяния частицы на потенциале (10.2) не соответствует переста-

новочной симметрии тождественных частиц и не может выполняться. Кроме того, для частиц с ненулевым
спином следует учесть спиновые переменные.

Мы рассмотрим простейший случай, когда спиновое состояние частицы не влияет на её пространствен-
но движение, в этом случае спиновая часть гамильтониана коммутируют с координатной.

𝐻̂ =
p̂2
1

2𝑚
+

p̂2
2

2𝑚
+ 𝑉 (r1 − r1)⏟  ⏞  

𝐻̂коорд.

+𝐻̂𝑆 , [𝐻̂𝑆 , 𝐻̂коорд.] = 0.
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Мы можем считать, что 𝐻̂𝑆 = 0 без потери общности11.
Координатную часть гамильтониана мы распишем, как обычно в задаче двух тел, через суммарный

импульс p̂ и импульс относительного движения p̂:

𝐻̂коорд. =
P̂2

4𝑚⏟ ⏞ 
𝐻̂ц.м.

+
p̂2

𝑚
+ 𝑉 (r)⏟  ⏞  
𝐻̂отн.

.

Волновая функция системы из двух тождественных частиц зависит от координат и проекций спина на
ось 𝑧. Рассмотрим случай, когда в состоянии с определённой энергией определено также значение энер-
гии движения центра масс 𝐸ц.м. (собственное число наблюдаемой 𝐻̂ц.м.) и можно выделить множитель,
зависящий только от радиус-вектора центра масс R:

Ψ(r1,𝑚
𝑠
1; r2,𝑚

𝑠
2) = Ψ(R, r,𝑚𝑠

1,𝑚
𝑠
2) = 𝜓ц.м.(R)𝜓(r,𝑚𝑠

1,𝑚
𝑠
2).

𝜓ц.м.(R) — это стационарное состояние свободной частицы массы 2𝑚. Далее нас интересует только вол-
новая функция 𝜓(r,𝑚𝑠

1,𝑚
𝑠
2).

Оператор перестановки новых координатах частиц действует так:

𝑃12Ψ(R, r,𝑚𝑠
1,𝑚

𝑠
2) = Ψ(R,−r,𝑚𝑠

1,𝑚
𝑠
2) = (−1)2𝑠Ψ(R, r,𝑚𝑠

1,𝑚
𝑠
2).

Если волновая функция факторизована, то оператор перестановки частиц не действует на множитель,
описывающий движение центра масс:

𝑃12𝜓ц.м.(R)𝜓(r,𝑚𝑠
1,𝑚

𝑠
2) = 𝜓ц.м.(R)𝜓(−r,𝑚𝑠

1,𝑚
𝑠
2) = (−1)2𝑠𝜓ц.м.(R)𝜓(r,𝑚𝑠

1,𝑚
𝑠
2).

10.6.1 Факторизуемая волновая функция
Рассмотрим сначала случай когда волновая функция 𝜓(r,𝑚𝑠

1,𝑚
𝑠
2) тоже факторизуема, т. е. расклады-

вается на множители
𝜓(r,𝑚𝑠

1,𝑚
𝑠
2) = 𝜑(r)𝜒(𝑚𝑠

1,𝑚
𝑠
2).

Если волновая функция факторизована на координатную и спиновую часть, то оператор перестановки
частиц на координатную часть действует как оператор координатной инверсии (𝐼), а на спиновую — путём
перестановки спиновых аргументов (𝑃 𝑠):

𝑃12𝜑(r)𝜒(𝑚
𝑠
1,𝑚

𝑠
2) = 𝜑(−r)⏟  ⏞  

𝐼𝜑(r)

𝜒(𝑚𝑠
1,𝑚

𝑠
2)⏟  ⏞  

𝑃 𝑠𝜒(𝑚𝑠
1,𝑚

𝑠
2)

= (−1)2𝑠𝜑(r)𝜒(𝑚𝑠
1,𝑚

𝑠
2).

Факторизуемая собственная функция унитарного оператора 𝑃12 = 𝐼𝑃 𝑠 должна быть одновременно соб-
ственной функцией унитарных операторов 𝐼 и 𝑃 𝑠. Поскольку 𝐼2 = 1̂, (𝑃 𝑠)2 = 1̂, собственные числа
операторов 𝐼 и 𝑃 𝑠 — ±1.

В качестве базисных спиновых состояний с определённой чётностью удобно выбрать состояния 𝜒𝑆𝑀 с
определённым суммарным спином 𝑆(𝑆 +1) и его проекцией 𝑀 и чётностью (−1)2𝑠−𝑆 . При этом чётность
координатной части 𝜑(r) должна составлять12 (−1)𝑆 , чтобы чётность функции 𝜓(r,𝑚𝑠

1,𝑚
𝑠
2) составила

(−1)2𝑠.
Асимптотика имеет вид:

𝜓(r → ∞,𝑚𝑠
1,𝑚

𝑠
2) =

[︂(︂
eik0r +

𝑓(k0,k)

𝑟
ei𝑘𝑟
)︂
+ (−1)𝑆

(︂
e−ik0r +

𝑓(−k0,−k)

𝑟
ei𝑘𝑟
)︂]︂

𝜒𝑆𝑀 (𝑚𝑠
1,𝑚

𝑠
2). (10.36)

Асимптотика для координатной волновой функции:

𝜑(r → ∞) =

(︂
eik0r +

𝑓(k0,k)

𝑟
ei𝑘𝑟
)︂
+ (−1)𝑆

(︂
e−ik0r +

𝑓(−k0,−k)

𝑟
ei𝑘𝑟
)︂
. (10.37)

Амплитуда 𝑓(k0,k) может быть получена путём решения задачи рассеяния для гамильтониана

𝐻̂отн. =
p̂2

𝑚
+ 𝑉 (r),

т. е. для частицы массы 𝜇 = 𝑚
2 в потенциале 𝑉 (r).

11Даже если 𝐻̂𝑆 ̸= 0, то спиновая система всё равно не взаимодействует с координатной ([𝐻̂𝑆 , 𝐻̂коорд.] = 0). Мы можем
перейти в представление взаимодействия, положив 𝐻̂0 = 𝐻̂𝑆 (т. е. мы можем спиновую подсистему рассматривать в пред-
ставлении Гайзенберга, а координатную — в представлении Шрёдингера), после чего уравнение Шрёдингера в представлении
взаимодействия совпадёт с уравнением Шрёдингера в представлении Шрёдингера при 𝐻̂𝑆 = 0.

12Мы уже знаем из глав 4 и 8, вне зависимости от того, являются ли частицы бозонами или фермионами, если суммарный
спин двух частиц определён, то чётность координатной функции двух частиц по отношению к перестановке координат
частиц равна (−1)𝑆 .
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детектор

𝜃

𝜋 − 𝜃

Рис. 10.3: Два неразличимых варианта рассеяния тождественных частиц

При столкновении двух тождественных частиц в принципе невозможно сказать, какая из них попала
в детектор. Поэтому в системе центра инерции случаи рассеяния на угол 𝜃 и на угол 𝜋 − 𝜃 в принципе
неразличимы и вместо сложение вероятностей (сечений) надо складывать амплитуды (см. рис. 10.3):

𝑑𝜎𝑆 =
⃒⃒
𝑓(k0,k) + (−1)𝑆𝑓(−k0,−k)

⃒⃒2
𝑑Ω, (10.38)

𝑑𝜎𝑆 =
⃒⃒
𝑓(𝜑, 𝜃) + (−1)𝑆𝑓(𝜑+ 𝜋, 𝜋 − 𝜃)

⃒⃒2
𝑑Ω =

=
(︁
|𝑓(𝜑, 𝜃)|2⏟  ⏞  
1-я частица

+ |𝑓(𝜑+ 𝜋, 𝜋 − 𝜃)|2⏟  ⏞  
2-я частица

+(−1)𝑆2Re [𝑓(𝜑, 𝜃) 𝑓*(𝜑+ 𝜋, 𝜋 − 𝜃)]⏟  ⏞  
интерференционный член

)︁
𝑑Ω.

10.6.2 Рассеяние неполяризованных пучков

Размерность пространства спиновых состояний может быть легко получена в базисе |𝑠,𝑚𝑠1⟩|𝑠,𝑚𝑠2⟩
как (2𝑠+ 1)2. Понятно, что в базисе |𝑆,𝑀⟩ размерность та же самая:

𝑁 =

2𝑠∑︁
𝑆=0

𝑆∑︁
𝑀=−𝑆

1 =

2𝑠∑︁
𝑆=0

(2𝑆 + 1) =
(4𝑠+ 2)(2𝑠+ 1)

2
= (2𝑠+ 1)2.

Для неполяризованных частиц сечение рассеяния получается усреднением по всем спиновым состояниям:

𝑑𝜎 =
1

𝑁

2𝑠∑︁
𝑆=0

𝑆∑︁
𝑀=−𝑆

𝑑𝜎𝑆 =
1

𝑁

2𝑠∑︁
𝑆=0

(2𝑆 + 1)𝑑𝜎𝑆 =
1

𝑁

⎛⎝ 2𝑠∑︁
𝑆=0, чёт.

(2𝑆 + 1)

⎞⎠ 𝑑𝜎0 +
1

𝑁

⎛⎝ 2𝑠∑︁
𝑆=1, нечёт.

(2𝑆 + 1)

⎞⎠ 𝑑𝜎1.

Для целого 𝑠
2𝑠∑︁

𝑆=0, чёт.

(2𝑆 + 1) =

𝑠∑︁
𝑘=0

(4𝑘 + 1) =
(4𝑠+ 2)(𝑠+ 1)

2
= (2𝑠+ 1)(𝑠+ 1).

Для полуцелого 𝑠
2𝑠∑︁

𝑆=0, чёт.

(2𝑆 + 1) =

𝑠− 1
2∑︁

𝑘=0

(4𝑘 + 1) =
(4𝑠)(𝑠+ 1

2 )

2
= (2𝑠+ 1)𝑠.

𝑑𝜎 =
𝑠+ 1

2𝑠+ 1
𝑑𝜎2𝑠+

𝑠

2𝑠+ 1
𝑑𝜎2𝑠−1 =

(︂
|𝑓(𝜑, 𝜃)|2 + |𝑓(𝜑+ 𝜋, 𝜋 − 𝜃)|2 + (−1)2𝑠

2𝑠+ 1
2Re [𝑓(𝜑, 𝜃) 𝑓*(𝜑+ 𝜋, 𝜋 − 𝜃)]

)︂
𝑑Ω.

По мере роста 𝑠 коэффициент при интерференционном члене уменьшается и остаются два члена связанные
с тем, что мы не знаем какая из двух частиц попала в детектор.
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10.6.3 Рассеяние поляризованных пучков
Дифференциальные сечения для состояний с определённым суммарным спином (10.38) — это частный

случай сечений рассеяния поляризованных пучков. Но большинство состояний базиса |𝑆,𝑀⟩ нефакто-
ризуемы, т. е. не могут быть представлены в виде тензорного произведения состояний первого спина и
второго спина. В этом базисе факторизуемо только состояния |2𝑠,±2𝑠⟩ = |𝑠,±𝑠⟩|𝑠,±𝑠⟩. Только для этих
состояний можно отдельно приготовить частицы первого пучка, и отдельно — второго пуска. В осталь-
ных состояниях |𝑆,𝑀⟩ спины двух частиц скоррелированы. А значит каждую пару сталкивающихся
частиц надо приготовлять специальным образом. Например, если мы хотим столкнуть пару электронов в
синглетном состоянии |0, 0⟩ = |↑↓⟩−|↓↑⟩√

2
, то мы сначала можем поместить электроны в основное состояние

потенциальной ямы, а потом выключить поле, создающее яму, после чего развести электроны и столкнуть.
Такие скоррелированные столкновения достаточно сложно реализовать, поэтому обычно ограничиваются
случаем факторизуемых спиновых состояний.

Пусть мы решили стационарное уравнение Шрёдингера

𝐻̂отн.𝜓(r,𝑚
𝑠
1,𝑚

𝑠
2) =

ℏ2𝑘2

𝑚⏟  ⏞  
𝐸

𝜓(r,𝑚𝑠
1,𝑚

𝑠
2)

не обращая внимания на (анти)симметрию по отношению к перестановке частиц. Решение может быть
найдено в виде

𝜓(r,𝑚𝑠
1,𝑚

𝑠
2) = 𝜑(r)𝜒(𝑚𝑠

1,𝑚
𝑠
2).

Здесь

𝐻̂отн.𝜑(r) =
ℏ2𝑘2

𝑚
𝜑(r),

а спиновая волновая функция 𝜒(𝑚𝑠
1,𝑚

𝑠
2) совершенно произвольна.

Функцию 𝜑 выберем так, чтобы она удовлетворяла асимптотике (10.2)

𝜑(r → ∞) = eik0r⏟ ⏞ 
𝜓пад.

+
𝑓(k0,k)

𝑟
ei𝑘𝑟⏟  ⏞  

𝜓расс.

⇒ 𝜓(r → ∞,𝑚𝑠
1,𝑚

𝑠
2) =

(︂
eik0r +

𝑓(k0,k)

𝑟
ei𝑘𝑟
)︂
𝜒(𝑚𝑠

1,𝑚
𝑠
2). (10.39)

С учётом того, что для бозонов (фермионов) допустимы только симметричные (антисимметричные)
решения, волновую функцию следует симметризовать (антисимметризовать):

𝜓симм. = 𝜓(r,𝑚𝑠
1,𝑚

𝑠
2) + (−1)2𝑠𝜓(−r,𝑚𝑠

1,𝑚
𝑠
2) = 𝜑(r)𝜒(𝑚𝑠

1,𝑚
𝑠
2) + (−1)2𝑠𝜑(−r)𝜒(𝑚𝑠

1,𝑚
𝑠
2).

Для асимптотики получаем

𝜓симм.(r → ∞,𝑚𝑠
1,𝑚

𝑠
2) =

(︂
eik0r +

𝑓(k0,k)

𝑟
ei𝑘𝑟
)︂
𝜒(𝑚𝑠

1,𝑚
𝑠
2) + (−1)2𝑠

(︂
e−ik0r +

𝑓(−k0,−k)

𝑟
ei𝑘𝑟
)︂
𝜒(𝑚𝑠

1,𝑚
𝑠
2).

Нормировочный коэффициент не возникает, так как мы нормируем на плотность частиц в падающем
пучке.

В случае |𝜒⟩ = |𝑠,𝑚𝑠1⟩|𝑠,𝑚𝑠2⟩ при 𝑚𝑠1 ̸= 𝑚𝑠2 интерференционный член исчезает:

𝑑𝜎𝜒 =
(︁
|𝑓(𝜑, 𝜃)|2 + |𝑓(𝜑+ 𝜋, 𝜋 − 𝜃)|2

)︁
𝑑Ω.

Исчезновение интерференционного члена связано с тем, что частицы в этом процессе становятся разли-
чимы: по проекции спина мы можем сказать частица из какого пучка попала в детектор.

В случае |𝜒⟩ = |𝑠,𝑚𝑠1⟩|𝑠,𝑚𝑠1⟩ спиновая волновая функция 𝜒 оказывается чётной, волновая функция
факторизуется

𝑑𝜎𝜒 =
(︁ ⃒⃒
𝑓(𝜑, 𝜃) + (−1)2𝑠𝑓(𝜑+ 𝜋, 𝜋 − 𝜃)

⃒⃒2 )︁
𝑑Ω =

=
(︁
|𝑓(𝜑, 𝜃)|2 + |𝑓(𝜑+ 𝜋, 𝜋 − 𝜃)|2 + (−1)2𝑠2Re [𝑓(𝜑, 𝜃) 𝑓*(𝜑+ 𝜋, 𝜋 − 𝜃)]

)︁
𝑑Ω.

(ф!) При рассеянии тождественных частиц с одинаковыми проекциями спина попадание в датчик од-
ной или другой частицы — в принципе не различимые события и мы складываем амплитуды вероятностей
(амплитуды рассеяния) При рассеянии тождественных частиц с разными проекциями спина попадание
в датчик одной или другой частицы в принципе различимы (частицы «помечены» разными проекциями
спина и оказываются различимыми) и мы складываем уже плотности вероятностей (дифференциальные
сечения рассеяния).
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Для неполяризованный пучков мы можем усреднить по всем состояниям вида |𝜒⟩ = |𝑠,𝑚𝑠1⟩|𝑠,𝑚𝑠2⟩.
При этом 𝑚𝑠1 = 𝑚𝑚2 в одном случае из 2𝑠+1, поэтому получаем тот же результат, который мы получили
выше при усреднении по суммарному спину:

𝑑𝜎 =

(︂
|𝑓(𝜑, 𝜃)|2 + |𝑓(𝜑+ 𝜋, 𝜋 − 𝜃)|2 + (−1)2𝑠

2𝑠+ 1
2Re [𝑓(𝜑, 𝜃) 𝑓*(𝜑+ 𝜋, 𝜋 − 𝜃)]

)︂
𝑑Ω.
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Глава 11

Основы теории излучения

Мы будем рассматривать взаимодействие электромагнитного излучения с электрическими зарядами
как малое возмущение, т. е. гамильтониан системы будет состоять из трёх частей

𝐻̂ = 𝐻̂частиц + 𝐻̂св.поле + 𝑉вз.,

которые описывают систему зарядов, взаимодействующих электростатически 𝐻̂частиц, свободное (без вза-
имодействия с зарядами) волновое электромагнитное поле 𝐻̂св.поле и взаимодействие зарядов с волновым
полем, которое мало и может рассматриваться как возмущение 𝑉вз..

11.1 Калибровка Кулона
Электромагнитное поле появляется в двух частях нашего гамильтониана: электростатическое поле

в гамильтониане 𝐻̂частиц и волновое поле в 𝐻̂св.поле. Поэтому в первую очередь следует выяснить как
осуществить такое разделение.

Для этого мы использует калибровочное условие Кулона (калибровку Кулона):

divA = 0. (11.1)

Наложение кулоновской калибровке не фиксирует потенциалы однозначно. Оно оставляет возможность
осуществлять остаточные калибровочные преобразования (5.8) с функцией 𝑓(𝑡, r), удовлетворяющей усло-
вию

△𝑓(𝑡, r) = 0. (11.2)

Напомним, как получаются уравнения электромагнитного поля в кулоновской калибровке. Подставим
определение тензора электромагнитного поля через 4-потенциал во вторую пару уравнений Максвелла в
4-мерной форме:

𝐹𝑖𝑗 = 𝜕𝑖𝐴𝑗 − 𝜕𝑗𝐴𝑖, 𝐴𝑖 = (−𝜙,A), 𝜕𝑗𝐹
𝑖𝑗 = 4𝜋

𝑐 𝑗
𝑖, 𝑗𝑖 = (𝑐𝜌, j), 𝜕𝑗

(︀
𝜕𝑖𝐴𝑗 − 𝜕𝑗𝐴𝑖

)︀
= 4𝜋

𝑐 𝑗
𝑖.

После наложение калибровки Кулона получаем уравнение на скалярную и векторную части 4-потенциала:

△𝜙 = −4𝜋𝜌, (11.3)
2A = − 4𝜋

𝑐 j+
1
𝑐 grad

𝜕𝜙
𝜕𝑡 . (11.4)

Уравнение (11.3) позволяет определить скалярный потенциал в некоторый момент времени 𝑡 по рас-
пределению зарядов в тот же момент времени 𝑡. Получается, что 𝜙 выражается через степени свободы,
описывающие движение электрически заряженных частиц:

𝜙(𝑡, r) =

ˆ
𝜌(𝑡, r0) 𝑑

3r0
|r− r0|

. (11.5)

(!) Поле 𝜙 в калибровке Кулона не является динамическим, никакие степени свободы в ним не свя-
заны. Можно сказать, что скалярный потенциал «привязан» к зарядам и обеспечивает их мгновенное
кулоновское взаимодействие.

Рассмотрим теперь уравнение на векторный потенциал в калибровке Кулона. Это уже типичное урав-
нение динамики:

1

𝑐2
𝜕2A

𝜕𝑡2⏟  ⏞  
«ускорение»

= △A⏟ ⏞ 
«упругая сила»

+ 4𝜋
𝑐 j−

1
𝑐
𝜕𝜙
𝜕𝑡⏟  ⏞  

«внешняя сила»

.
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И это уравнение можно буквально рассматривать как описание ансамбля гармонических осцилляторов
под действием внешних сил. Каждый гармонический осциллятор — это собственное колебание электро-
магнитного поля (например, бегущая или стоячая волна), а обобщённые внешние силы полностью выра-
жаются через 𝜌 и j, т. е. описывают взаимодействие электромагнитных волн с заряженными частицами.

Взаимодействие волнового поля с частицами предполагается малым и будет рассмотрено по теории
возмущений, а сейчас мы перейдём к собственным колебаниям электромагнитного поля, описываемым
уравнением без внешних сил

1

𝑐2
𝜕2A

𝜕𝑡2
= △A, (11.6)

и квантованию этих колебаний (как системы гармонических осцилляторов).

11.2 Разложение свободного электромагнитного поля на осцилля-
торы

Рассмотрим электромагнитное поле периодическое по всем трём координатным осям:

𝐴(𝑡, 𝑥, 𝑦, 𝑧) = 𝐴(𝑡, 𝑥+ ℓ𝑥, 𝑦, 𝑧) = 𝐴(𝑡, 𝑥, 𝑦 + ℓ𝑦, 𝑧) = 𝐴(𝑡, 𝑥, 𝑦, 𝑧 + ℓ𝑧).

Мы будем рассматривать поле в конечном ящике размером ℓ𝑥×ℓ𝑦×ℓ𝑧. Рассмотрение поля в ящике удобно
тем, что вместо интеграла Фурье поля разлагается в ряд Фурье, после чего можно перейти к пределу бес-
конечного ящика. Получившийся ящик с периодическими граничными условиями не привносит краевых
эффектов, что видно из того, что его можно произвольно сдвигать параллельно осям координат, кроме
того в таком ящике возможны собственные колебания в виде не только стоячих, но и бегущих волн.

Собственное колебание электромагнитного поля можно найти в виде бегущей волны:

𝜙 ≡ 0, 𝐴(𝑡, r) = Re
(︁
a0 e

−i(𝜔𝑡−kr)
)︁
.

Здесь a0 — вектор комплексной амплитуды. Из калибровочного условия Кулона следует поперечность
волны:

(k,a0) = 0.

Из условий периодичности следует, что волновой вектор должен принадлежать обратной решётке:

k = (𝑘𝑥, 𝑘𝑦, 𝑘𝑧) =
(︁

2𝜋
ℓ𝑥
𝑛𝑥,

2𝜋
ℓ𝑦
𝑛𝑦,

2𝜋
ℓ𝑧
𝑛𝑧

)︁
, 𝑛𝑥, 𝑛𝑦, 𝑛𝑧 ∈ Z. (11.7)

Мы видим, что одно состояние в пространстве векторов k приходится на объём (2𝜋)3

ℓ𝑥ℓ𝑦ℓ𝑧
= (2𝜋)3

𝑉 . Так что
для большого ящика число состояний в объёме 𝑑3𝑘 получается

𝑑𝑁 =
𝑉 𝑑3𝑘

(2𝜋)3
=
𝑉 𝑘2 𝑑Ω 𝑑𝑘

(2𝜋)3
=
𝑉 𝐸2 𝑑Ω 𝑑𝐸

(2𝜋ℏ𝑐)3
, 𝐸 = 𝑐ℏ𝑘.

Поделив на 𝑑𝐸 получаем энергетическую плотность состояний в элементе телесного угла:

𝜌(𝐸) =
𝑑𝑁

𝑑𝐸
=
𝑉 𝐸2 𝑑Ω

(2𝜋ℏ𝑐)3
(11.8)

Из волнового уравнения (11.6) следует дисперсионное соотношение (соотношение между волновым
вектором и частотой):

𝜔 = 𝑐|k|.

Чтобы увидеть динамику переопределим амплитуду так, чтобы она зависела от времени:

𝐴(𝑡, r) = Re
(︀
a(𝑡) eikr

)︀
= Re

(︀
e 𝑎(𝑡) eikr

)︀
, a(𝑡) = e 𝑎(𝑡) = e |a0| ei𝛼⏟  ⏞  

a0

e−i𝜔𝑡.

Здесь ei𝛼 — произвольный фазовый множитель.
Мы выделили комплексный вектор поляризации e, удовлетворяющий нормировочному условию1

(e*, e) = Re2 e+ Im2 e = ⟨e, e⟩ = 1.

1Для трёхмерных вектором мы используем скалярное произведение без комплексного сопряжения если скобки круглые
(·, ·) и с комплексным сопряжением первого множителя, если скобки угловые ⟨·, ·⟩.
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Также мы выделили скалярную комплексную амплитуду, которая и зависит от времени

𝑎(𝑡) = |a0| ei𝛼 e−i𝜔𝑡.

Комплексная амплитуда удовлетворяет дифференциальному уравнению, которое можно переписать
как систему уравнений на её вещественную и мнимую части:

𝑎̇ = −i𝜔𝑎 ⇔
{︂

Re 𝑎̇ = 𝜔 Im 𝑎,
Im 𝑎̇ = −𝜔Re 𝑎.

(11.9)

Система (11.9) соответствует системе уравнений Гамильтона для гармонического осциллятора, если в
роли координаты и импульса взять 𝑞 = 𝐶 Re 𝑎 и 𝑝 = 𝐶 Im 𝑎. Надо только подобрать коэффициент пропор-
циональности 𝐶 так, чтобы энергия волны в точности равнялась функции Гамильтона осциллятора.

Удобно массовый коэффициент подобрать такой, чтобы условие 𝐻(𝑞, 𝑝) = const задавало окружность:

𝐻(𝑞, 𝑝) = 𝜔
𝑞2 + 𝑝2

2
= 𝜔𝐶

2

2 𝑎*𝑎 = ℰэ.м. =

ˆ
E2 +B2

8𝜋
𝑑𝑉 =

ˆ
E2

4𝜋
𝑑𝑉.

В плоской бегущей волне всюду |E| = |B|, так что энергию магнитного поля можно отдельно не считать.

E = − 1
𝑐 grad𝜙⏟  ⏞  

0

−1

𝑐

𝜕A

𝜕𝑡
= Re

(︀
e 𝑎(𝑡) i𝜔

𝑐 eikr
)︀
= Re(e) |a0| 𝜔𝑐 sin(𝜔𝑡− kr− 𝛼)− Im(e) |a0| 𝜔𝑐 cos(𝜔𝑡− kr− 𝛼).

⟨E2⟩усреднение по ящику =
1

2
|a0|2

𝜔2

𝑐2
=

𝜔2

2𝑐2
𝑎*(𝑡) 𝑎(𝑡).

Так что энергия электромагнитной волны

ℰэ.м. =
𝑉 𝜔2

8𝜋𝑐2
𝑎*(𝑡) 𝑎(𝑡) ⇒ 𝐶 =

√︂
𝑉 𝜔

4𝜋𝑐2
, 𝑉 = ℓ𝑥ℓ𝑦ℓ𝑧.

Обозначим

𝐴 =
𝑞 + i𝑝√

2
=

√︂
𝑉 𝜔

8𝜋𝑐2
𝑎(𝑡).

Теперь функцию Гамильтона и векторный потенциал для бегущей волны можно записать как

𝐻(𝑞, 𝑝) = 𝜔
𝑞2 + 𝑝2

2
= 𝜔𝐴*𝐴, (11.10)

A(𝑡, r) =

√︂
8𝜋𝑐2

𝑉 𝜔
Re
(︀
e 𝑎(𝑡) eikr

)︀
=

√︂
2𝜋𝑐2

𝑉 𝜔

(︀
e𝐴(𝑡) eikr + e*𝐴*(𝑡) e−ikr

)︀
. (11.11)

Мы нашли векторный потенциал и функцию Гамильтона для единичного собственного колебания. Лег-
ко проверить, что если рассмотреть волны с разными волновыми векторами вида (11.7), то их энергии
складываются. Также складываются энергии если волны имеют одинаковые волновые векторы и ортого-
нальные векторы поляризации ⟨e1, e2⟩ = 0. Таким образом, мы можем ввести базис линейно независимых
собственных колебаний и разложить по нему колебания поля в ящике:

A(𝑡, r) =
∑︁
k,𝜆

√︃
2𝜋𝑐2

𝑉 𝜔k

(︀
ek,𝜆𝐴k,𝜆(𝑡) e

ikr + e*k,𝜆𝐴
*
k,𝜆(𝑡) e

−ikr
)︀
, 𝜔k = 𝑐|k|, (11.12)

𝐻э.м.поля(𝑞k,𝜆, 𝑝k,𝜆) =
∑︁
k,𝜆

𝜔k

𝑞2k,𝜆 + 𝑝2k,𝜆
2

=
∑︁
k,𝜆

𝜔k𝐴
*
k,𝜆𝐴k,𝜆, 𝐴k,𝜆 =

𝑞k,𝜆 + i𝑝k,𝜆√
2

. (11.13)

Здесь k пробегает все значения вида (11.7), 𝜆 ∈ {1, 2} нумерует поляризации при данном волновом векторе

⟨ek,𝜆1 , ek,𝜆2⟩ = δ𝜆1𝜆2 .

Разложение (11.12) — это просто разложение векторного потенциала в ящике в ряд Фурье, а гамиль-
тониан (11.13) — гамильтониан системы классических невзаимодействующих осцилляторов.
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11.3 Квантование свободного электромагнитного поля

Чтобы проквантовать электромагнитное поле в ящике надо просто надеть шляпки в формулах (11.12)
и (11.13):

Âш(r) =
∑︁
k,𝜆

√︃
2𝜋𝑐2

𝑉 𝜔k

(︁
ek,𝜆𝐴k,𝜆 e

ikr + e*k,𝜆𝐴
+
k,𝜆 e

−ikr
)︁
, 𝜔k = 𝑐|k| (11.14)

(индекс «ш» означает шрёдингеровское представление),

𝐻̂э.м.поля =
∑︁
k,𝜆

𝜔k

𝑞2k,𝜆 + 𝑝2k,𝜆
2

, 𝐴k,𝜆 =
𝑞k,𝜆 + i𝑝k,𝜆√

2
. (11.15)

Удобно ввести обезразмеренные импульсы и повышающие-понижающие операторы, как для гармониче-
ского осциллятора:

𝑄̂k,𝜆 =
𝑞k,𝜆√
ℏ
, 𝑃k,𝜆 =

𝑝k,𝜆√
ℏ
, 𝑏̂k,𝜆 =

𝑄̂k,𝜆 + i𝑃k,𝜆√
2

=
𝐴k,𝜆√

ℏ
, 𝑏̂+k,𝜆 =

𝑄̂k,𝜆 − i𝑃k,𝜆√
2

=
𝐴+

k,𝜆√
ℏ
.

Операторы 𝑏̂±k,𝜆 удовлетворяют обычным бозонным коммутационным соотношениям и являются операто-
рами рождения и уничтожения фотонов:

[𝑏̂k1,𝜆1 , 𝑏̂
+
k2,𝜆2

] = δk1k2 δ𝜆1𝜆2 , [𝑏̂k1,𝜆1 , 𝑏̂k2,𝜆2 ] = [𝑏̂+k1,𝜆1
, 𝑏̂+k2,𝜆2

] = 0.

Теперь векторный потенциал и гамильтониан приобретают вид

Âш(r) =
∑︁
k,𝜆

√︃
2𝜋ℏ𝑐2
𝑉 𝜔k

(︁
ek,𝜆 𝑏̂k,𝜆 e

ikr + e*k,𝜆 𝑏̂
+
k,𝜆 e

−ikr
)︁
, 𝜔k = 𝑐|k|, (11.16)

𝐻̂э.м.поля =
∑︁
k,𝜆

ℏ𝜔k

𝑄̂2
k,𝜆 + 𝑄̂2

k,𝜆

2
=
∑︁
k,𝜆

ℏ𝜔k

(︁
𝑏+k,𝜆𝑏k,𝜆⏟  ⏞  
𝑛̂k,𝜆

+ 1
2

)︁
=

∑︁
k,𝜆

ℏ𝜔k𝑛̂k,𝜆⏟  ⏞  
энергия всех фотонов

+
∑︁
k,𝜆

ℏ𝜔k
1
2⏟  ⏞  

энергия_вакуума=+∞

.

(11.17)
Наинизшая собственная энергия электромагнитного поля (энергия вакуума) оказывается бесконечной

и мы её просто отбрасываем2, поскольку эта энергия — константа (хотя и бесконечная), а к энергии всегда
можно добавить константу.

После отбрасывания (перенормировки) энергии вакуума гамильтониан принимает вид

𝐻̂э.м.поля =
∑︁
k,𝜆

ℏ𝜔k

𝑄̂2
k,𝜆 + 𝑄̂2

k,𝜆 − 1

2
=
∑︁
k,𝜆

ℏ𝜔k 𝑏
+
k,𝜆𝑏k,𝜆 =

∑︁
k,𝜆

ℏ𝜔k𝑛̂k,𝜆. (11.18)

Для применения нестационарной теории возмущений векторный потенциал надо переписать в пред-
ставлении взаимодействия, отнеся к невозмущённому гамильтониану гамильтониан частиц + гамильто-
ниан волнового поля. Полевые операторы в представлении взаимодействия в данном случае совпадают с
полевыми операторам в представлении Гайзенберга:

Âг,в(𝑡, r) =
∑︁
k,𝜆

√︃
2𝜋ℏ𝑐2
𝑉 𝜔k

(︁
ek,𝜆 𝑏̂k,𝜆(𝑡) e

ikr + e*k,𝜆 𝑏̂
+
k,𝜆(𝑡) e

−ikr
)︁
= (11.19)

=
∑︁
k,𝜆

√︃
2𝜋ℏ𝑐2
𝑉 𝜔k

(︁
ek,𝜆 𝑏̂k,𝜆 e

−i(𝜔𝑡−kr) + e*k,𝜆 𝑏̂
+
k,𝜆 e

i(𝜔𝑡−kr)
)︁
.

В первой строчке формулы (11.19) используются операторы рождения и уничтожения в представлении
Гайзенберга (или в представлении взаимодействия), а во второй строке — в представлении Шрёдингера.

2Это называется перенормировкой энергии бозонного вакуума.
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11.4 Взаимодействие электромагнитного поля с источниками
Чтобы добавить в гамильтониан частиц взаимодействие с внешним электромагнитным полем мы мо-

жем, как и раньше, просто удлинить импульсы (или производные) как в (5.2), только теперь векторный
потенциал тоже становится оператором (11.19):

𝑝𝑖 = (− ℰ̂
𝑐 , 𝑝𝑥, 𝑝𝑦, 𝑝𝑧⏟  ⏞  

p̂

) → 𝒫𝑖 :=
(︁
𝑃0 +

𝑞

𝑐
𝜙⏟ ⏞ 

−𝐴0

, P̂− 𝑞

𝑐
Â
)︁
. (11.20)

Обратите внимание, мы надели шляпку на векторный потенциал, но не на скалярный, потому, что ска-
лярным потенциалом в калибровке Кулона не связаны дополнительные степени свободы. Впрочем, взаи-
модействие со скалярным потенциалом у нас будет возникать ещё в невозмущённом гамильтониане для
частиц, так что в данном случае достаточно удлинить пространственные импульсы:

p̂ → 𝒫̂ := P̂− 𝑞

𝑐
Â.

Так что если у нас был гамильтониан частиц 𝐻̂ч(r, p̂), то взаимодействие с электромагнитным излучением
вводится так:

𝐻̂ч(r, p̂) → 𝐻̂ч(r, 𝒫̂) + 𝐻̂э.м.поля = 𝐻̂ч(r, p̂) + 𝐻̂э.м.поля⏟  ⏞  
𝐻̂0

+ 𝑉взаимодействия⏟  ⏞  
𝐻̂ч(r,𝒫̂)−𝐻̂ч(r,P̂)

.

В тех случаях, где мы уже получили гамильтонианы для частиц, взаимодействующих с классическим
электромагнитным полем, достаточно надеть на векторные потенциалы шляпки, т. е. взять их в форме
(11.19) и добавить гамильтониан свободного электромагнитного поля (11.18).

Мы рассмотрим систему нерелятивистских частиц с массами 𝑚𝑎, зарядами 𝑞𝑎 и пропорицональными
спинам магнитными моментами, задаваемыми гиромагнитными отношениями 𝑔𝑎:

𝐻̂ =
∑︁
𝑎

[︃
(P̂𝑎 − 𝑞𝑎

𝑐 Â𝑎)
2

2𝑚𝑎
+ 𝑈(r𝑎)− 𝑔𝑎

𝑞𝑎ℏ
2𝑚𝑎𝑐

(︀
ŝ𝑎, rot Â𝑎

)︀]︃
+
∑︁
𝑎<𝑏

𝑈(|r𝑎 − r𝑏|) + 𝐻̂э.м.поля = (11.21)

=
∑︁
𝑎

[︃
P̂2
𝑎

2𝑚𝑎
+ 𝑈(r𝑎)

]︃
+
∑︁
𝑎<𝑏

𝑈(|r𝑎 − r𝑏|) + 𝐻̂э.м.поля⏟  ⏞  
𝐻̂0

+
∑︁
𝑎

[︃
𝑞2𝑎Â

2
𝑎

2𝑚𝑎𝑐2
− 𝑞𝑎

(P̂𝑎, Â𝑎)

𝑚𝑎𝑐
− 𝑔𝑎

𝑞𝑎ℏ
2𝑚𝑎𝑐

(︀
ŝ𝑎, rot Â𝑎

)︀]︃
⏟  ⏞  

𝑉вз

Здесь 𝑎 — номер частицы, Â𝑎 := Â(r𝑎). Мы воспользовались тем, что

(P̂𝑎, Â𝑎)− (Â𝑎, P̂𝑎) = −iℏ div Â𝑎 = 0⏟  ⏞  
калибровка Кулона

.

11.5 Дипольное приближение
Взаимодействие системы нерелятивистских заряженных дираковских частиц с электромагнитным из-

лучением описывается оператором (11.21)

𝑉вз =
∑︁
𝑎

−𝑞𝑎
(P̂𝑎, Â𝑎)

𝑚𝑎𝑐⏟  ⏞  
𝑉1

+
∑︁
𝑎

𝑞2𝑎Â
2
𝑎

2𝑚𝑎𝑐2⏟  ⏞  
𝑉2

+
∑︁
𝑎

−𝑔𝑎
𝑞𝑎ℏ
2𝑚𝑎𝑐

(︀
ŝ𝑎, rot Â𝑎

)︀
⏟  ⏞  

𝑉3

, (11.22)

где, согласно (11.16),

Â𝑎 = Âш(r𝑎) =
∑︁
k,𝜆

√︃
2𝜋ℏ𝑐2
𝑉 𝜔k

(︁
ek,𝜆 𝑏̂k,𝜆 e

ikr𝑎 + e*k,𝜆 𝑏̂
+
k,𝜆 e

−ikr𝑎
)︁
. (11.23)

Члены разложения — это просто фурье-гармоники векторного потенциала, в которых амплитуды 𝑏̂± став-
шие операторами рождения-уничтожения фотонов.

Посмотрим на эти члены внимательнее:

• ek,𝜆 𝑏̂k,𝜆 e
ikr𝑎
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∘ ek,𝜆 — комплексный вектор поляризации,

∘ 𝑏̂k,𝜆 — оператор уничтожения фотона с волновым вектором k и поляризацией ek,𝜆,

∘ eikr𝑎 — оператор сдвига по импульсу заряженной частицы с номером 𝑎 на импульс поглощённого
фотона ℏk (здесь k — вектор с числовыми компонентами, а r𝑎 — оператор).

• e*k,𝜆 𝑏̂
+
k,𝜆 e

−ikr𝑎

∘ ek,𝜆 — комплексно сопряжённый вектор поляризации,

∘ 𝑏̂+k,𝜆 — оператор рождения фотона с волновым вектором k и поляризацией ek,𝜆,

∘ e−ikr𝑎 — оператор сдвига по импульсу заряженной частицы с номером 𝑎 на минус импульс
излучённого фотона −ℏk.

В члене 𝑉1 векторный потенциал в точке r𝑎 скалярно умножается на импульс частицы P̂𝑎. В разло-
жении поля на осцилляторы это даёт скалярные произведения вида

(P̂𝑎, ek,𝜆), (P̂𝑎, e
*
k,𝜆) = (P̂𝑎, ek,𝜆)

+.

То есть взаимодействие 𝑉1 частицы с модой колебаний (бегущей волной) электромагнитного поля оказы-
вается пропорциональным проекции её импульса на вектор поляризации этой волны.

Оценим три члена возмущения (11.22).
Оценим вектор-потенциал через характерное внешнее электрическое поле:

E = −1

𝑐

𝜕Â

𝜕𝑡
⇒ 𝐸 ∼ 𝜔

𝑐
𝐴, 𝐴 ∼ 𝑐

𝜔
𝐸,

Характерное значение 𝑉1 соответствует работе, совершаемой силой, со стороны внешнего поля на
расстоянии порядка длины волны, умноженной на малый фактор 𝑣

𝑐 :

𝑉1 ∼ |𝑞|𝑃𝐴
𝑚𝑐

∼ |𝑞|𝑣
𝑐

𝑐

𝜔
𝐸 ∼ 𝐹внеш𝜆

𝑣

𝑐
.

Характерное значение 𝑉2

𝑉2 ∼ 𝑞2𝐴2

𝑚𝑐2
∼ |𝑞𝐸|2

𝑚𝑐2
𝑐2

𝜔2
∼ 𝐹внеш𝜆

𝐹внеш𝜆

𝑚𝑐2

Отношение 𝑉2 к 𝑉1 соответствует отношению работы внешней силы на размере системы к энергии фотона

𝑉2
𝑉1

∼ 𝐹внеш𝜆/𝑐

𝑚𝑣
∼ 𝐹внеш/𝜔

ℏ/𝑅
∼ 𝐹внеш𝑅

ℏ𝜔
.

Если поле не слишком сильное, 𝑉2 можно пренебречь на фоне 𝑉1.
Характерное значение 𝑉3 соответствует работе характерной внешней силе на комптоновской длине

волны:

𝑉3 ∼ |𝑞|ℏ
𝑚𝑐

𝐸 ∼ 𝐹внеш
ℏ
𝑚𝑐

∼ 𝐹внеш𝜆К.

Отношение 𝑉3 к 𝑉1 соответствует отношению размера системы к длине волны. В дипольном приближении
(как и в классической электродинамике) мы рассматриваем случай, когда длина волны много больше
размера системы:

𝑉3
𝑉1

∼
𝐹внеш

ℏ
𝑚𝑐

𝐹внеш
𝑣
𝑐
𝑐
𝜔

∼ ℏ𝜔
𝑚𝑐𝑣

∼ ℏ/𝑚𝑣
𝑐/𝜔

∼ 𝑅

𝜆

На временах больших, по сравнению с периодом колебаний излучённой волны энергия сохраняется,
так что из всей бесконечной суммы (11.23) в первом порядке теории возмущений (в пренебрежении мно-
гофотонными процессами) существенны только члены для которых энергия фотона ℏ𝜔k = ℏ𝑐|k| близка к
разности уровней ℏ𝜔пер., между которыми переходит квантовая система.

Рассмотрим процесс излучения квантовой системы удерживая только главный вклад в нерелятивист-
ском пределе.

Пусть квантовая система локализована в области с характерным размером 𝐿≪ 𝑐
𝜔пер.

. Таким образом

Â ≈ Â𝑎 ≈
∑︁

𝜔k≈𝜔пер.

√︃
2𝜋ℏ𝑐2
𝑉 𝜔k

(︁
ek,𝜆 𝑏̂k,𝜆 + e*k,𝜆 𝑏̂

+
k,𝜆

)︁
. (11.24)
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Мы удержали в сумме только волновые числа фотонов, с энергией близкой к энергии перехода (с осталь-
ными моды колебаний взаимодействуют с нашей системой зарядов слабо).

Также мы положили e±ikr𝑎 ≈ 1, то есть пренебрегли набегом фазы волны на расстояниях порядка
𝐿. Поскольку эти экспоненты — операторы сдвига по импульсу, то мы также пренебрегли импульсом,
передающимся между электромагнитным полем (фотонами) и заряженными частицами. Передающимся
импульсом можно пренебречь потому, что для частицы, локализованной в области размера 𝐿 неопреде-
лённость импульса составляет ℏ

𝐿 ≫ ℏ|kпер.|.
Магнитное поле оказывается мало rot Â𝑎 ∼ Â𝑎|k| и 𝑉3 можно пренебречь.
Поскольку возмущение в некотором смысле мало, малым можно считать заряд частицы 𝑞, тогда можно

пренебречь вкладом 𝑉2, который имеет порядок 𝑞2.
У нас остаётся главный член 𝑉1

𝑉1 = −1

𝑐

(︁
Â,
∑︁
𝑎

𝑞𝑎
𝑚𝑎

P̂𝑎

)︁
= −1

𝑐

(︁
Â,

𝑑

𝑑𝑡

∑︁
𝑎

𝑞𝑎r𝑎⏟  ⏞  
d̂

)︁
= −1

𝑐

(︁
Â,

˙̂
𝑑
)︁
=

i

𝑐ℏ

(︁
Â, [d̂, 𝐻̂ч]

)︁
,

который выражается через электрический дипольный момент.
Применим теперь золотое правило Ферми.
Наша система состоит из системы заряженных частиц и волнового электромагнитного поля, которые

в невозмущённом гамильтониане не взаимодействуют. Поэтому начальное и конечное состояния факто-
ризуются как произведения состояния частиц |𝜓𝑖,𝑓 ⟩ и состояния поля |𝜒𝑖,𝑓 ⟩:

|𝑖⟩ = |𝜓𝑖⟩ ⊗ |𝜒𝑖⟩, |𝑓⟩ = |𝜓𝑓 ⟩ ⊗ |𝜒𝑓 ⟩.

Оператор дипольного момента (получившийся из операторов P̂𝑎) действуют только на состояние частиц.
После того, как мы пренебрегли координатной зависимостью векторного потенциала оператор Â действует
только на поле.

⟨𝑓 |𝑉1|𝑖⟩ =
i

𝑐ℏ

(︁
⟨𝜒𝑓 |Â|𝜒𝑖⟩, ⟨𝜓𝑓 |[d̂, 𝐻̂ч]|𝜓𝑖⟩

)︁
=

−i𝜔𝑓𝑖
𝑐

√︃
2𝜋ℏ𝑐2
𝑉 |𝜔𝑓𝑖|

⟨𝜒𝑓 |ek,𝜆 𝑏̂k,𝜆 + e*k,𝜆 𝑏̂
+
k,𝜆|𝜒𝑖⟩ ⟨𝜓𝑓 |d̂|𝜓𝑖⟩⏟  ⏞  

d𝑓𝑖

=

= −i sgn(𝜔𝑓𝑖)

√︂
2𝜋ℏ|𝜔𝑓𝑖|

𝑉

{︁
(ek,𝜆,d𝑓𝑖)⟨𝜒𝑓 |𝑏̂k,𝜆|𝜒𝑖⟩+ (e*k,𝜆,d𝑓𝑖)⟨𝜒𝑓 |𝑏̂+k,𝜆|𝜒𝑖⟩

}︁
.

Рассмотрим случай спонтанного излучения. В этом случае начальное состояние поля — вакуум |𝜒𝑖⟩ =
|0⟩, а в конечном состоянии появляется один фотон |𝜒𝑓 ⟩ = |1k,𝜆⟩. Тогда

⟨𝜒𝑓 |𝑏̂k,𝜆|𝜒𝑖⟩ = 0, ⟨𝜒𝑓 |𝑏̂+k,𝜆|𝜒𝑖⟩ = ⟨1k,𝜆|𝑏̂+k,𝜆|0⟩ = 1,

𝑉𝑓𝑖 = −i sgn(𝜔𝑓𝑖)

√︂
2𝜋ℏ𝜔𝑖𝑓
𝑉

(e*k,𝜆,d𝑓𝑖).

Используя полученный матричный элемент и плотность состояний (11.8) получаем вероятность излу-
чения в единицу времени в элемент телесного угла 𝑑Ω

𝑑𝑊𝑓𝑖 =
2𝜋

ℏ
|𝑉𝑓𝑖|2 𝜌( 𝐸𝑖⏟ ⏞ 

𝐸𝑓±ℏ𝜋
𝑡

) =
2𝜋

ℏ
2𝜋ℏ𝜔𝑖𝑓
𝑉

|(e*k,𝜆,d𝑖𝑓 )|2⏟  ⏞  
|𝑉𝑓𝑖|2

𝑉 (𝜔𝑖𝑓ℏ)2 𝑑Ω
(2𝜋ℏ𝑐)3⏟  ⏞  
𝜌(ℏ𝜔𝑖𝑓 )

=
𝜔3
𝑖𝑓

2𝜋ℏ𝑐3
|(e*k,𝜆,d𝑓𝑖)|2 𝑑Ω. (11.25)

Если просуммировать по поляризациям, то получим

2∑︁
𝜆=1

𝑑𝑊𝑓𝑖 =
𝜔3
𝑖𝑓

2𝜋ℏ𝑐3
|d⊥
𝑖𝑓 |2 𝑑Ω,

где значок ⊥ означает проекцию вектора на плоскость перпендикулярную вектору k: a⊥ = a− k(k,a)
k2 .

Интегрирование по телесному углу даёт вероятность спонтанного излучения в единицу времени в
дипольном приближении

𝑊𝑓𝑖 =
4

3

𝜔3
𝑖𝑓

ℏ𝑐3
|d𝑓𝑖|2.

Средняя интенсивность дипольного излучения получается умножением на энергию одного фотона ℏ𝜔𝑖𝑓 :

𝐼𝑑 =
4

3

𝜔4
𝑖𝑓

𝑐3
|d𝑓𝑖|2.
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11.6 Правила отбора для дипольных переходов
При рассмотрении процесса излучения в дипольном приближении во многих случаях матричный эле-

мент дипольного момент d𝑓𝑖 оказывается равным нулю, т. е. оказывается, что дипольное излучение отсут-
ствует (но может присутствовать излучение в следующих порядках). Равенство нулю матричного элемен-
ты дипольного момента часто можно выяснить без проведения вычислений из соображений симметрии.
Формализованные результаты таких симметрийных рассуждений называются правилами отбора для ди-
польного излучения.

Правила отбора могут быть полезны и в задачах не связанных с излучением (например, в рассмотре-
нии взаимодействия атома с внешним электрическим полем), если в этих задачах приходится вычислять
матричные элементы дипольного момента.

Можно обходиться и без правил отбора, просто в этом случае придётся делать много лишних вычис-
лений матричных элементов, которые в итоге окажутся нулями.

Правила отбора зависят от того, какими квантовыми числами нумеруются уровни невозмущённого
гамильтониана, а следовательно от его симметрий3.

11.6.1 Отбор по чётности
Все компоненты вектора дипольного момента d̂ =

∑︀
𝑎 𝑞𝑎r𝑎 меняют пространственную чётность вол-

новой функции, т. е. превращают чётную функцию в нечётную и наоборот. Легко проверить, что это
выражается в том, что оператор пространственной инверсии (собственные числа которого определяют
чётность) 𝐼 антикоммутирует с компонентами дипольного момента:

[𝑑𝛼, 𝐼]+ = 0.

Отсюда
0 = ⟨𝑓 |[𝑑𝛼, 𝐼]+|𝑖⟩ = ⟨𝑓 |𝑑𝛼𝐼 + 𝐼𝑑𝛼|𝑖⟩ = ⟨𝑓 |𝑑𝛼𝑃𝑖 + 𝑃𝑓𝑑𝛼|𝑖⟩ = (𝑃𝑖 + 𝑃𝑓 )⟨𝑓 |𝑑𝛼|𝑖⟩.

Здесь 𝑃𝑖,𝑓 = ±1 — пространственная чётность (собственные числа оператора 𝐼) для начального (𝑖) и
конечного (𝑓) состояний.

Следовательно, матричный элемент ⟨𝑓 |𝑑𝛼|𝑖⟩ может быть отличен ои нуля только при условии измене-
ния чётности:

𝑃𝑖 = −𝑃𝑓 .
(*) Для одной частицы пространственная чётность 𝑃 определяется через чётность орбитального мо-

мента 𝑃 = (−1)𝑙, но для нескольких частиц это правило уже не работает. Например, пусть есть две
частицу с орбитальными моментами 𝑙1 = 𝑙2 = 1. Пространственная чётность для каждой частицы равна
−1, а значит для двух частиц — +1. При этом суммарный орбитальный момент может принимать значе-
ния 𝐿 = 0, 1, 2. При 𝐿 = 1 пространственная чётность системы не определяется значением 𝐿, поскольку
+1 ̸= (−1)𝐿.

11.6.2 Базис |𝑆,𝑀𝑆;𝐿,𝑀𝐿⟩
Дипольный момент не зависит от спиновых степеней свободы и, следовательно, коммутирует со спи-

новыми операторами:
[𝑑𝛼, 𝑆𝛽 ] = 0, [𝑑𝛼, Ŝ

2] = 0. (11.26)

Отсюда

0 = ⟨𝑓 |[𝑑𝛼, 𝑆𝑧]|𝑖⟩ = ⟨𝑓 |𝑑𝛼𝑆𝑧 − 𝑆𝑧𝑑𝛼|𝑖⟩ = ⟨𝑓 |𝑑𝛼𝑀𝑆𝑖 −𝑀𝑆𝑓𝑑𝛼|𝑖⟩ = (𝑀𝑆𝑖 −𝑀𝑆𝑓 )⟨𝑓 |𝑑𝛼|𝑖⟩.

Следовательно, матричный элемент ⟨𝑓 |𝑑𝛼|𝑖⟩ может быть отличен ои нуля только при условии сохранения
проекции полного спина:

𝑀𝑆𝑖 =𝑀𝑆𝑓 .

Аналогично из второго коммутатора (11.26) получаем

𝑆𝑖 = 𝑆𝑓 .

Дипольный момент является себя вектором, выражаемым через пространственные координаты и им-
пульсы частиц. Чтобы повернуть этот вектор генераторами поворота служат проекции суммарного орби-
тального момента систему 𝐿̂𝛼. Коммутатор дипольного и орбитального момента — стандартный комму-
татор вектора и генераторов поворота:

[𝑑𝛼, 𝐿̂𝛽 ] = iε𝛼𝛽𝛾𝑑𝛾 .

3Так для частицы в потенциальной яме (резонаторе) в форме прямоугольного параллелепипеда квантовые числа будут
другие, чем в сферически-симметричном потенциале и большинство правил отбора будут другими.
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В частности для 𝑧-компонент
[𝑑𝑧, 𝐿̂𝑧] = 0

Отсюда находим (аналогично примеру [𝑑𝛼, 𝑆𝛽 ] = 0)

0 = (𝑀𝐿𝑖 −𝑀𝐿𝑓 )⟨𝑓 |𝑑𝑧|𝑖⟩,

Следовательно, матричный элемент ⟨𝑓 |𝑑𝑧|𝑖⟩ может быть отличен от нуля только при условии сохранения
проекции полного орбитального момента:

𝑀𝐿𝑖 =𝑀𝐿𝑓 .

От компонент 𝑥 и 𝑦 дипольного момента удобно перейти к компонентам 𝑑±:

[𝑑±, 𝐿̂𝑧] = [𝑑𝑥 ± i𝑑𝑦, 𝐿̂𝑧] = −i𝑑𝑦 ∓ 𝑑𝑥 = ∓(𝑑𝑥 ± i𝑑𝑦) = ∓𝑑±

Отсюда

⟨𝑓 |[𝑑±, 𝐿̂𝑧]|𝑖⟩ = ⟨𝑓 |𝑑±𝐿̂𝑧 − 𝐿̂𝑧𝑑±|𝑖⟩ = ⟨𝑓 |𝑑±𝑀𝐿𝑖 −𝑀𝐿𝑓𝑑±|𝑖⟩ = (𝑀𝐿𝑖 −𝑀𝐿𝑓 )⟨𝑓 |𝑑±|𝑖⟩ = ∓⟨𝑓 |𝑑±|𝑖⟩.

Отсюда для 𝑑± получаем правило отбора

𝑀𝐿𝑓 =𝑀𝐿𝑖 ± 1.

Так что для 𝑀𝐿 в дипольном приближении допустимы только переходы для которых выполнено пра-
вило отбора

𝑀𝐿𝑓 −𝑀𝐿𝑖 ∈ {−1, 0,+1}.

Осталось определить правила отбора для 𝐿.
В дипольном приближении размер системы мал по сравнению с длиной волны, а значит (см. параграф

10.5 «Фазовая теория рассеяния») орбитальный момент излучённого фотона равен нулю. Спин фотона
равен 1, так рассматривая сумму орбитального момента системы и спина фотона после излучения (см.
4 «Сложение моментов») и сравнивая с орбитальным моментом до излучения получаем из сохранения
момента импульса правило отбора:

𝐿𝑓 − 1 ⩾ 𝐿𝑖 ⩾ 𝐿𝑓 + 1.

Переход
𝐿𝑖 = 𝐿𝑓 = 0

запрещён, поскольку начальное и конечное состояние сферически симметричны.

11.6.3 Базис |𝑆, 𝐿; 𝐽,𝑀𝐽⟩
Как в предыдущем параграфе, сохраняется правило отбора для суммарного спина

𝑆𝑓 = 𝑆𝑖.

Для 𝐽𝑧 имеют место те же коммутационные соотношения, что раньше для 𝐿̂𝑧. Так что 𝑀𝐽 получаются
аналогичные правила отбора.

Для 𝑑𝑧
𝑀𝐽𝑓 =𝑀𝐽𝑖.

Для 𝑑±
𝑀𝐽𝑓 =𝑀𝐽𝑖 ± 1.

Так что для 𝑀𝐽 в дипольном приближении допустимы только переходы для которых выполнено правило
отбора

𝑀𝐽𝑓 −𝑀𝐽𝑖 ∈ {−1, 0,+1}.

По-прежнему
𝐿𝑓 − 1 ⩾ 𝐿𝑖 ⩾ 𝐿𝑓 + 1.

И по аналогии, из сохранения момента импульса получаем правило отбора:

𝐽𝑓 − 1 ⩾ 𝐽𝑖 ⩾ 𝐽𝑓 + 1.
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Глава 12

Матрица плотности и теория измерений
→ КПКМ-4.8,5.3.2,7.4

12.1 Чистые и смешанные состояния → КПКМ-4.8
См. книгу М.Г. Иванов «Как понимать квантовую механику», § 4.8 «Матрица плотности» (стр. 115).

12.2 Селективные и неселективные измерения → КПКМ-5.3.2
См. книгу М.Г. Иванов «Как понимать квантовую механику», § 5.3 «Измерение» (стр. 153) и особенно

пункт 5.3.2 «Селективное и неселективное измерение» (стр. 160).

12.3 Квантовый эффект Зенона → КПКМ-7.4
См. книгу М.Г. Иванов «Как понимать квантовую механику», § 7.4 «Квантовый эффект Зенона (па-

радокс незакипающего чайника)» (стр. 219).
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